-
磷(phosphorus,P)是植物中脂质、核酸、二磷酸腺苷(ADP)、三磷酸腺苷(ATP)和糖类的重要组成元素,是含量仅次于氮的第二大限制性养分[1],在植物生长发育过程中发挥着不可替代的作用。植物吸收磷素主要以可溶性的磷酸根离子(
${\rm{PO}}_4^{3 - } $ 、${\rm{HPO}}_4^{2 - } $ 、${{\rm{H}}_2}{\rm{PO}}_4^ - $ )形式为主[2],虽然土壤中磷素含量很高,但是可供利用的无机磷素含量较少,是导致植物缺磷的主要原因之一[3]。植物磷转运蛋白(phosphate transporter,PHT)是植物从土壤中吸收无机磷酸盐并在体内进行再分配利用的载体。磷吸收动力学研究表明:植物在进化过程中形成了2类不同的磷吸收转运系统[4],分别为高亲和力磷吸收转运系统(high-affinity P uptake system)和低亲和力磷吸收转运系统(low-affinity P uptake system)[5]。研究者最早在拟南芥Arabidopsis thaliana中克隆出了磷转运蛋白基因AtPHT1.1,随后通过基因组测序、同源序列分析等方法陆续在大豆Glycine max[6]、玉米Zea mays[7]、大麦Triticum aestivum[8]和番茄Lycopersicon esculentum[9]等植物中克隆出了磷转运蛋白基因。植物磷酸盐转运蛋白属于MFS超级家族(major facilitator superfamily)[10],有12个疏水的跨膜区域,蛋白质结构高度相似,在氨基酸序列中存在保守特征序列GGDYPLSATIMSE,以及保守的磷酸化位点和糖基化位点。磷转运蛋白分为4个亚家族,分别为PHTⅠ、PHTⅡ、PHTⅢ、PHTⅣ[11]。拟南芥中,AtPHT1.1、AtPHT1.2和AtPHT1.3对拟南芥吸收磷的贡献非常大,而且AtPHT1.1在长距离运转磷的过程中具有重要作用[12]。研究表明:高磷环境中OsPHT1是水稻Oryza sativa吸收和转运磷素的关键PHTⅠ成员[13]。缺磷显著诱导OsPHT2、OsPHT4、OsPHT8、OsPHT9 和OsPHT10等的表达。OsPHT8几乎在水稻的各个器官中都强烈表达,是组成型磷转运子;OsPHT8下调会使新叶磷含量下降,老叶磷含量上升,处于灌浆期的胚乳和胚中的磷含量显著下降,说明水稻OsPHT8对磷素从源到库的再分配起到至关重要的作用[14]。大豆中,GmPHT7在根际成熟丛枝菌Arbuscular mycorrhiza (AM)根的根冠小柱细胞、皮层细胞和无菌根的侧根原基细胞中表达,在衰老叶片的维管束末端少数管胞中也有表达,主要负责向种子转运再活化的磷素[15]。此外,GmPHT10和GmPHT11也会受AM诱导表达[16],即磷酸盐转运蛋白基因广泛存在于各种植物中。毛竹Phyllostachys edulis属于禾本科Gramineae刚竹属Phyllostachys,具有经济价值高、用途广泛、栽培面积大等特点[17]。影响毛竹生长发育的因素有很多,如林地养分、水分不足[18],粗放的抚育管理和病虫害防治不及时等[19],其中,磷元素是限制毛竹林生长的重要营养元素之一。因此,研究毛竹磷素转运和吸收的相关基因的表达具有重要意义[20]。由于土壤对磷素的化学固定作用,磷素利用率普遍较低[21]。磷酸盐转运蛋白是植物吸收和转运磷素的重要参与者。本研究利用生物信息学方法鉴定毛竹PHTⅠ家族成员,分析其基因启动子、蛋白质理化性质、基因结构、氨基酸保守基序、基因在染色体的位置以及基因的组织表达特异性等,以期为深入研究毛竹PHT基因功能,探索毛竹磷素利用机制提供参考。
-
通过比对分析毛竹基因组,鉴定并确定编码完整MFs_1的候选基因共20个。植物PHT一般都含有MFs_1保守结构域,候选基因编码的蛋白质都含有保守的跨膜结构域,与MFS超家族的PHT家族特征相同。根据PHT候选基因在毛竹Scaffold中的位置以及同源基因的名称依次命名为:PePHT1~PePHT20。
对20个PHTⅠ家族基因进行生物信息学分析,其理化性质结果(表1)显示:PePHTs编码的氨基酸序列长度,最长为696 个氨基酸 (PePHT1),最短为432 个氨基酸(PePHT17),理论等电点为6.84~9.30,除PePHT15外,其他均为碱性蛋白质,分子量为48.61~76.37 kDa。疏水性测试显示:所有蛋白质疏水性值(grand average hydropathicity,GRAVY)>0,说明该家族蛋白质均为疏水性蛋白质。脂肪族氨基酸指数显示:PHTⅠ家族的蛋白质热稳定性为 83.79~105.07,热稳定性差异较大。亚细胞定位结果显示:PePHTs均定位于细胞膜中。
基因名称 基因登录号 氨基酸/个 理论等电点 分子量/kDa 疏水性值 脂肪族氨基酸指数 亚细胞定位 PePHT1 PH02Gene03602 696 7.63 76.37 0.269 92.56 细胞膜 PePHT2 PH02Gene11006 531 9.10 57.69 0.538 98.91 细胞膜 PePHT3 PH02Gene14509 541 9.15 59.64 0.322 95.10 细胞膜 PePHT4 PH02Gene21291 532 8.45 58.05 0.371 89.40 细胞膜 PePHT5 PH02Gene24702 536 8.71 59.02 0.321 90.80 细胞膜 PePHT6 PH02Gene37931 547 8.31 58.97 0.412 92.32 细胞膜 PePHT7 PH02Gene39948 558 8.85 60.96 0.313 93.58 细胞膜 PePHT8 PH02Gene44007 536 8.03 58.49 0.408 91.27 细胞膜 PePHT9 PH02Gene44009 574 8.60 62.35 0.449 94.79 细胞膜 PePHT10 PH02Gene48053 507 8.01 55.77 0.259 87.59 细胞膜 PePHT11 PH02Gene48969 598 9.21 59.84 0.204 83.79 细胞膜 PePHT12 PH02Gene49859 567 8.99 61.45 0.376 92.31 细胞膜 PePHT13 PH02Gene50239 554 8.95 60.55 0.329 93.92 细胞膜 PePHT14 PH02Gene21248 518 8.02 57.42 0.494 105.04 细胞膜 PePHT15 PH02Gene21249 655 6.84 71.89 0.226 90.87 细胞膜 PePHT16 PH02Gene21250 505 9.30 55.46 0.473 105.07 细胞膜 PePHT17 PH02Gene21252 432 9.24 48.61 0.348 101.83 细胞膜 PePHT18 PH02Gene47590 520 8.67 58.31 0.324 90.25 细胞膜 PePHT19 PH02Gene47591 563 8.92 62.63 0.314 94.81 细胞膜 PePHT20 PH02Gene49564 527 8.04 58.50 0.391 97.53 细胞膜 Table 1. Physicochemical properties of proteins encoded by PHTⅠ gene family in Ph. edulis
-
由图1可知:毛竹PHTⅠ家族基因多数含1~2个内含子(intron),在所有PePHTs中,PePHT14内含子区域最长,PePHT8和PePHT11内含子区域最短。保守基序分析显示:PePHTs含有7~10个保守基序,分别命名为motif1~motif10。其中有6个基序高度保守,分别是motif2、motif3、motif4、motif5、motif6、motif8,其他基序在部分序列中缺失。9个PePHTs中含有10个motif,其他11个PePHTs缺失1~3个motif,PePHT1、PePHT10都缺少motif7,PePHT11缺少motif1,PePHT12缺少motif9、motif10,PePHT14、PePHT15、PePHT16、PePHT18、PePHT19、PePHT20都缺少motif10,PePHT17则缺少motif7、motif9、motif10。PePHTs高度保守基序的氨基酸数目也不尽相同,最长的motif由50个氨基酸组成,最短的motif由29个氨基酸组成。
为探究PePHTs受内在调控因子调节的情况和对外界环境的响应,选取PePHTs距离起始密码子上游2 000 bp的序列,对其所含顺式作用元件和应答元件进行分析。如图2所示:所有启动子的顺式作用元件种类比较相似,包括MYB转录因子结合的顺式作用元件,生长素、赤霉素、水杨酸、脱落酸等激素响应元件以及低温、干旱、缺氧、光等非生物胁迫响应元件。由此表明:PePHTs的转录表达可能会受到非生物胁迫和激素的影响。
-
为了解PePHTs的进化关系,预测基因潜在功能,本研究提取20个毛竹、18个拟南芥和25个水稻的PHT基因的CDS序列进行多重序列比对,并利用MEGA 7.0软件根据邻接法构建系统进化树。由图3显示:毛竹、拟南芥和水稻的PHT基因被聚类到4个亚家族中,来自毛竹的20个PePHTs均分布在第Ⅰ亚家族的5个分支上,1个分支中只有PePHTs基因,另4个分支和水稻聚类在一起。此外,第Ⅰ亚家族中还包含9个拟南芥和12个水稻的PHT基因。PHT亚家族中的基因在功能上存在一定差异,如大多数第Ⅰ亚家族成员主要在直接接触根际环境的根毛和表皮细胞中表达,参与根系对环境中磷元素的吸收过程[27-28],定位在细胞膜上。相比拟南芥,毛竹PHT基因均优先与水稻PHT基因聚类,推测PePHTs在功能上可能与水稻同源基因更为相似。
-
染色体定位显示:20个毛竹PHT基因位于10条染色体上,其中23号染色体上最多,有6个,分别是PePHT14、PePHT15、PePHT16、PePHT17、PePHT18、PePHT19;其次是24号染色体,有3个,分别是PePHT10、PePHT11、PePHT20,推测这2个基因簇中的基因可能分别编码催化2种新陈代谢途径中不同步骤的磷转运酶[29]。5号、14号以及15号染色体上各有2个基因,其余染色体各有1个(图4)。除数量分布不均匀外,各基因在染色体上的分布位置也不均匀,大多数基因位于染色体的中部,少量则位于顶部和底部。适应性分析结果表明:PePHT7的ω>0,其他基因的ω<0,表明PePHT7受到正选择压力,其他基因受到负选择压力[30]。
-
根据毛竹6个不同部位的转录组表达谱数据[26],对毛竹PHTⅠ家族基因进行组织特异性表达分析。由图5可知:毛竹不同组织中的PePHTs表达丰度差异较大,其中PePHT5、PePHT7、PePHT8、PePHT12、PePHT14、PePHT19在箨鞘中大量表达;PePHT2、PePHT3、PePHT6、PePHT13、PePHT15在根中表达丰度较高;PePHT18在叶中大量表达,PePHT10、PePHT20在叶鞘中大量表达,PePHT16、PePHT17在叶和叶鞘中也有少量表达。
Identification and expression pattern of phosphorus transporter Ⅰ family genes of Phyllostachys edulis
doi: 10.11833/j.issn.2095-0756.20210471
- Received Date: 2021-07-05
- Accepted Date: 2021-12-10
- Rev Recd Date: 2021-12-06
- Available Online: 2022-05-23
- Publish Date: 2022-05-23
-
Key words:
- Phyllostachys edulis /
- phosphate transporter /
- phosphorus absorption /
- molecular characteristics /
- expression analysis
Abstract:
Citation: | WANG Shaoliang, ZHANG Wenyu, GAO Zhimin, ZHOU Mingbing, YANG Kebin, SONG Xinzhang. Identification and expression pattern of phosphorus transporter Ⅰ family genes of Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2022, 39(3): 486-494. doi: 10.11833/j.issn.2095-0756.20210471 |