留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征

杨开业 巩合德 李敬 刘运通 沙丽清 宋清海 金艳强 杨大新 李培广 闻国静 陈爱国 庞志强 张一平

杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平. 元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190647
引用本文: 杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平. 元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190647
YANG Kaiye, GONG Hede, LI Jing, LIU Yuntong, SHA Liqing, SONG Qinghai, JIN Yanqiang, YANG Daxin, LI Peiguang, WEN Guojing, CHEN Aiguo, PANG Zhiqiang, ZHANG Yiping. Dynamic characteristics of soil respiration of Savanna ecosystem in dry hot valley of Yuanjiang[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190647
Citation: YANG Kaiye, GONG Hede, LI Jing, LIU Yuntong, SHA Liqing, SONG Qinghai, JIN Yanqiang, YANG Daxin, LI Peiguang, WEN Guojing, CHEN Aiguo, PANG Zhiqiang, ZHANG Yiping. Dynamic characteristics of soil respiration of Savanna ecosystem in dry hot valley of Yuanjiang[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190647

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征

doi: 10.11833/j.issn.2095-0756.20190647
基金项目: 国家自然科学基金资助项目(41975147,41961144017,U1602234,41405143,31560189);云南省应用基础研究计划面上项目(2017FB077);“十三五”国家重点研发计划(2016YFC0502105);国家科技基础性工作专项子课题(2015FY11030001-4);云南省教育厅科学研究基金项目(2019Y0118);中国科学院“一三五”专项(2017XTBG-F01,2017XTBG-T01)
详细信息
    作者简介: 杨开业,从事土壤温室气体研究。E-mail: kaiyeyang@126.com
    通信作者: 巩合德,副教授,从事森林生态学研究。E-mail: gonghede3@163.com。李敬,讲师,从事温室气体研究。E-mail: lijing@qau.edu.cn
  • 中图分类号: S718.5

Dynamic characteristics of soil respiration of Savanna ecosystem in dry hot valley of Yuanjiang

  • 摘要:   目的  土壤呼吸对大气中二氧化碳浓度有重要的调节作用。萨王纳生态系统土壤呼吸是全球温室气体主要排放源之一,但是其排放特征与主要影响因子尚不清楚。  方法  以元江干热河谷(萨王纳)稀树灌草丛生态系统为对象,利用静态箱法,从2014年6月到2015年6月对元江土壤呼吸进行测量,研究了元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征及其影响因子。  结果  元江干热河谷稀树灌草丛生态系统土壤温度、水分和呼吸速率具有明显的季节变化,雨季高于干季。土壤呼吸速率与土壤温度和土壤湿度分别呈指数和抛物线关系,土壤5和10 cm处温度Q10分别为1.73和1.98,小于全球均值2.0,采用10 cm土壤温度能更好地模拟土壤呼吸。通过土壤温度、湿度与土壤呼吸双因子拟合分析得出元江萨王纳生态系统的土壤呼吸主要受到水分条件的制约;生态系统土壤呼吸年排放量为4.20 t·hm−2·a−1,其中雨季2.71 t·hm−2,占全年碳排放总量的64.5 %,干季的二氧化碳排放量为1.49 t·hm−2,占全年碳排放总量的35.5 %。全球萨王纳生态系统土壤呼吸均值为8.16 t·hm−2·a−1  结论  元江土壤呼吸总量在全球萨王纳生态系统中处于较低位置,主要是因为元江萨王纳生态系统降水量较全球萨王纳低,而降水量与萨王纳地区土壤呼吸呈极显著正相关关系(R2=0.61,P<0.001)。图4表1参72
  • 图  1  2014年6月至2015年6月降水量,土壤湿度(A),土壤温度(B)和土壤呼吸速率(C)季节变化

    数值为平均值±标准误(n=5)

    Figure  1.  Seasonal dynamics in precipitation and soil water content at 5 cm,10 cm depth (A), soil temperature at 10 cm (B) and soil respirations (C) from 2014 June to 2015 June

    图  2  环境因子土壤温度(A)和土壤湿度(B)模拟土壤呼吸

    Figure  2.  Simulated results of soil respirations by environment factors soil temperature (A) and soil water content (B)

    图  3  5、10 cm土壤温度、土壤湿度分别进行双因子回归模拟土壤呼吸速率

    Figure  3.  Soil respirations estimated from two-factor regression soil temperature and soil water content at 5 and 10 cm receptively

    图  4  全球萨王纳土壤呼吸年总量与年降水量(A)和年均气温(B)的关系

    Figure  4.  Relationship between annual soil respiration and mean annual precipitation and mean annual temperature across Savanna ecosystem of the world

    表  1  干季、雨季和全年降水、土壤呼吸总量和土壤温度、湿度日均值

    Table  1.   Total value of precipitation and soil respiration, daily mean values soil temperature, soil water content in the dry season, the rain season and annual respectively

    时期土壤温度/℃土壤湿度/%土壤呼吸总量/(t·hm−2)降水/mm
    5 cm10 cm5 cm10 cm
    干季22.0±1.2 B22.4±0.5 B12.5±0.9 B13.8±1.2 B1.49±0.53 B203.1
    雨季29.0±1.1 A27.8±0.4 A14.7±1.1 A17.8±1.0 A2.71±0.76 A515.2
    年 25.7±1.2 25.2±0.4 13.7±1.0 15.9±1.1 4.20±1.30 718.3
      说明:数值为平均值±标准误,同列不同大写字母表示同一指标不同时期间在0.01水平差异显著
    下载: 导出CSV
  • [1] SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48(1): 7 − 20. doi:  10.1023/A:1006247623877
    [2] CROWTHER T W, VAN DEN HOOGEN J, WAN J, et al. The global soil community and its influence on biogeochemistry [J]. Science, 2019, 365(6455): 722.
    [3] HASHIMOTO S. A new estimation of global soil greenhouse gas fluxes using a simple data-oriented model [J]. PLoS One, 2012, 7(8): E41962. doi:  10.1371/journal.pone.0041962
    [4] BOND-LAMBERTY B, THOMSON A. Temperature-associated increases in the global soil respiration record [J]. Nature, 2010, 464(7288): 579 − 582. doi:  10.1038/nature08930
    [5] SPONSELLER R A. Precipitation pulses and soil CO2 flux in a Sonoran Desert Ecosystem [J]. Glob Change Biol, 2007, 13(2): 426 − 436. doi:  10.1111/j.1365-2486.2006.01307.x
    [6] BAE K, FAHEY T J, YANAI R D, et al. Soil nitrogen availability affects belowground carbon allocation and soil respiration in northern hardwood forests of new hampshire [J]. Ecosystems, 2015, 18(7): 1179 − 1191. doi:  10.1007/s10021-015-9892-7
    [7] BUTLE A, MEIR P, SAIZ G, et al. Annual variation in soil respiration and its component parts in two structurally contrasting woody Savannas in central Brazil [J]. Plant Soil, 2012, 352(1): 129 − 142.
    [8] JANSSENS I, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nat Geosci, 2010, 3(5): 315 − 322. doi:  10.1038/ngeo844
    [9] MOYANO F E, LUYSSAERT N, et al. The moisture response of soil heterotrophic respiration: interaction with soil properties [J]. Biogeosciences, 2012, 9(3): 1173 − 1182. doi:  10.5194/bg-9-1173-2012
    [10] FANG C, MONCRIEFF J B. The dependence of soil CO2 efflux on temperature [J]. Soil Biol Biochem, 2001, 33(2): 155 − 165. doi:  10.1016/S0038-0717(00)00125-5
    [11] LIU X Z, WAN S O, SU B, et al. Response of soil CO2 efflux towater manipulation in a tallgrass prairie ecosystem [J]. Plant Soil, 2002, 240(2): 213 − 223. doi:  10.1023/A:1015744126533
    [12] QI Ye, XU Ming, WU Jianguo. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises [J]. Ecol Modelling, 2002, 153(1/2): 131 − 142.
    [13] WANG Y S, HU Y Q, JI B M, et al. An investigation on the relationship between emission uptake of greenhouse gases and environmental factors in semiarid grassland [J]. Adv Atmos Sci, 2003, 20(1): 119 − 127. doi:  10.1007/BF03342056
    [14] GRACE J, JOS J S, MEIR P, et al. Productivity and carbon fluxes of tropical Savannas [J]. J Biogeogr, 2006, 33(3): 387 − 400. doi:  10.1111/j.1365-2699.2005.01448.x
    [15] PEEL M C, FINLAYSON B L, MCMAHON T A. Updated world map of the köppen-geiger climate classification [J]. Hydrol Earth Syst Sci Discuss, 2007, 4(2): 439 − 473. doi:  10.5194/hessd-4-439-2007
    [16] BOUSQUET P, CIAIS P, MILLER J, et al. Contribution of anthropogenic and natural sources to atmospheric methane variability [J]. Nature, 2006, 443(7110): 439 − 443. doi:  10.1038/nature05132
    [17] LIVESLEY S J, GROVER S, HUTLEY L B, et al. Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern australia [J]. Agric For Meteorol, 2011, 151(11): 1440 − 1452. doi:  10.1016/j.agrformet.2011.02.001
    [18] MILLARD P, MIDWOOD A J, HUNT J E, et al. Partitioning soil surface CO2 efflux into autotrophic and heterotrophic components using natural gradients in soil Δ13C in an undisturbed Savannah soil [J]. Soil Biol Biochem, 2008, 40(7): 1575 − 1582. doi:  10.1016/j.soilbio.2008.01.011
    [19] 何永彬, 卢培泽, 朱彤. 横断山——云南高原干热河谷形成原因研究[J]. 资源科学, 2000, 22(5): 69 − 72. doi:  10.3321/j.issn:1007-7588.2000.05.016

    HE Yongbin, LU Peize, ZHU Tong. Causes for formation of dry-hot valleys in Hengduan mountain-Yunnan plateau [J]. Resour Sci, 2000, 22(5): 69 − 72. doi:  10.3321/j.issn:1007-7588.2000.05.016
    [20] 金振洲. 云南元江干热河谷半萨王纳植被的植物群落学研究[J]. 广西植物, 1999, 19(4): 289 − 302. doi:  10.3969/j.issn.1000-3142.1999.04.001

    JIN Zhenzhou. A phytosociological study on the semi-savanna vegetation in the dry-hot valleys of Yuanjiang River, Yunnan [J]. Guihaia, 1999, 19(4): 289 − 302. doi:  10.3969/j.issn.1000-3142.1999.04.001
    [21] 刘方炎, 李昆. 萨王纳群落研究进展[J]. 世界林业研究, 2008, 21(6): 25 − 30.

    LIU Fangyan, LI Kun. Research advances in Savanna community [J]. World For Res, 2008, 21(6): 25 − 30.
    [22] 张一平, 段泽新, 窦军霞. 岷江上游干暖河谷与元江干热河谷的气候特征比较研究[J]. 长江流域资源与环境, 2005, 14(1): 76 − 82. doi:  10.3969/j.issn.1004-8227.2005.01.015

    ZHANG Yiping, DUAN Zexin, DOU Junxia. Comparison of climate characteristics between a dry-warm valley in upper reaches of Min River and a dry-hot valley of Yuanjiang River [J]. Resour Environ Yang Basin, 2005, 14(1): 76 − 82. doi:  10.3969/j.issn.1004-8227.2005.01.015
    [23] 沈蕊, 张建利, 何彪, 等. 元江流域干热河谷草地植物群落结构特征与相似性分析[J]. 生态环境学报, 2010, 19(12): 2821 − 2825. doi:  10.3969/j.issn.1674-5906.2010.12.009

    SHEN Rui, ZHANG Jianli, HE Biao, et al. The structure characteristic and analysis on similarity of grassland community in dry-hot valley of Yuanjiang River [J]. Ecol Environ Sci, 2010, 19(12): 2821 − 2825. doi:  10.3969/j.issn.1674-5906.2010.12.009
    [24] 张树斌, 张教林, 曹坤芳. 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响[J]. 植物科学学报, 2016, 34(1): 117 − 126. doi:  10.11913/PSJ.2095-0837.2016.10117

    ZHANG Shubin, ZHANG Jiaolin, CAO Kunfang. Effects of seasonal drought on water status, leaf spectral traits and pluoescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species [J]. Plant Sci J, 2016, 34(1): 117 − 126. doi:  10.11913/PSJ.2095-0837.2016.10117
    [25] ZHOU Wenjun, JI Hongli, ZHU Jing, et al. The effects of nitrogen fertilization on N2O emissions from a rubber plantation [J]. Sci Rep, 2016, 6: 28230. doi:  10.1038/srep28230
    [26] 竹万宽, 陈少雄, ARNOLD R, 等. 不同种桉树人工林土壤呼吸速率时空动态及其影响要素[J]. 浙江农林大学学报, 2018, 35(3): 412 − 421. doi:  10.11833/j.issn.2095-0756.2018.03.004

    ZHU Wankuan, CHEN Shaoxiong, ARNOLD R, et al. Temproal and spatial dynamics of soil respiration and influencing factors in eucalyptus plantations [J]. J Zhejiang A&F Univ, 2018, 35(3): 412 − 421. doi:  10.11833/j.issn.2095-0756.2018.03.004
    [27] 徐睿, 姜春前, 白彦锋, 等. 杉木纯林和混交林土壤温室气体通量的差异[J]. 浙江农林大学学报, 2019, 36(2): 307 − 317.

    XU Rui, JIANG Chunqian, BAI Yanfeng, et al. Soli greenhouse gas fluxes in pure and mixed stands of Chinese fir[J]. 2019, 36(2): 307 − 317.
    [28] 冯文婷, 邹晓明, 沙丽清, 等. 哀牢山中山湿性常绿阔叶林土壤呼吸季节和昼夜变化特征及影响因子比较[J]. 植物生态学报, 2008, 32(1): 31 − 39. doi:  10.3773/j.issn.1005-264x.2008.01.004

    FENG Wenting, ZOU Xiaoming, SHA Liqing, et al. Comparisons between seasonal and diurnal patterns of soil respiration in a montane evergreen broad-leaved forest of Ailaomoutains, China [J]. Chin J Plant Ecol, 2008, 32(1): 31 − 39. doi:  10.3773/j.issn.1005-264x.2008.01.004
    [29] ZHANG Xiang, ZHANG Yiping, SHA Liqing, et al. Effects of continuous drought stress on soil respiration in a tropical rain forest in southwest China [J]. Plant Soil, 2015, 394(1/2): 343 − 353.
    [30] JIANG H, DENG Q, ZHOU G, et al. Responses of soil respiration and its temperature moisture sensitivity to precipitation in three subtropical forests in southern China [J]. Biogeosciences, 2013, 10(6): 3963 − 3982. doi:  10.5194/bg-10-3963-2013
    [31] TALMON Y, STERNBERG M, GRÜNZWEI J M. Impact of rainfall manipulations and biotic controls on soil respiration in Mediterranean and desert ecosystems along an aridity gradient [J]. Glob Change Biol, 2011, 17(2): 1108 − 1118. doi:  10.1111/j.1365-2486.2010.02285.x
    [32] REY A, PEGORARO E, OYONARTE C, et al. Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain [J]. Soil Biol Biochem, 2011, 43(2): 393 − 403. doi:  10.1016/j.soilbio.2010.11.007
    [33] SUN Q Q, MEYER W S, KOERBER G R, et al. A wildfire event influences ecosystem carbon fluxes but not soil respiration in a semi-arid woodland [J]. Agr For Meteorol, 2016, 226/227: 57 − 66. doi:  10.1016/j.agrformet.2016.05.019
    [34] RICHARDS A E, DATHE J F, COOK G D. Fire interacts with season to influence soil respiration in tropical Savannas [J]. Soil Biol Biochem, 2012, 53: 90 − 98. doi:  10.1016/j.soilbio.2012.05.009
    [35] LIU Tao, XU Zhenzhu, HOU Yanhui, et al. Effects of warming and changing precipitation rates on soil respiration over two years in a desert steppe of northern China [J]. Plant Soil, 2016, 400(1/2): 15 − 27.
    [36] HOLT J A, HODGEN M J, LAMB D. Soil respiration in the seasonally dry tropics near townsville, North Queensland [J]. Soil Biol Biochem, 1990, 28(5): 737 − 745.
    [37] GUPTA S R, SINGH J S. Soil respiration in a tropical grassland [J]. Soil Biol Biochem, 1981, 13(4): 261 − 268. doi:  10.1016/0038-0717(81)90060-2
    [38] UPADHYAYA S D, SIDDIQUI S A, SINGH V P. Seasonal variation in soil respiration of certain tropical grassland communities [J]. Trop Ecol, 1981, 22: 157 − 161.
    [39] BRIDGE B J, MOTT J J, HARTIGAN R J. The formation of degraded areas in the dry Savanna woodlands of northern Australia [J]. Aust J Soil Res, 1983, 21(1): 91 − 104. doi:  10.1071/SR9830091
    [40] SANHUEZA E, SANTANA M. CO2 emissions from tropical Savanna soil under first year of cultivation [J]. Interciencia, 1994, 19: 20 − 23.
    [41] PINTO A D S, BUSTAMANTE M M C, KISSELLE K, et al. Soil emissions of N2O, NO, and CO2 in Brazilian Savannas: Effects of vegetation type, seasonality, and prescribed fires [J]. J Geophys Res, 2002, 107(D20): 8089. doi:  10.1029/2001JD000342
    [42] CHEN Xiaosong, HUTLEY L B, EAMUS D. Carbon balance of a tropical Savanna of northern Australia [J]. Oecologia, 2003, 137(3): 405 − 416. doi:  10.1007/s00442-003-1358-5
    [43] XU Liukang, BALDOCCHI D D, TANG Jianwu. How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature [J]. Global Biologychem Cycles, 2004, 18(4): GB4002.
    [44] HIBBARD K A, LAW B E, REICHSTEIN M, et al. An analysis of soil respiration across northern hemisphere temperate ecosystems [J]. Biogeochemistry, 2005, 73(1): 29 − 70. doi:  10.1007/s10533-004-2946-0
    [45] TANG J, BALDOCCHI D D. Spatial-temporal variation in soil respiration in an oak-grass Savanna ecosystem in california and its partitioning into autotrophic and heterotrophic components [J]. Biogeochemistry, 2005, 73(1): 183 − 207. doi:  10.1007/s10533-004-5889-6
    [46] MCCULLEY R L, BOUTTON T W, ARCHER S R. Soil respiration in a subtropical Savanna parkland: response to water additions [J]. Soil Sci Soc Am J, 2007, 71(3): 820 − 828. doi:  10.2136/sssaj2006.0303
    [47] YUSTE J C, BALDOCCHI D D, GERSHENSON A, et al. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture [J]. Glob Chang Biol, 2007, 13(9): 2018 − 2035. doi:  10.1111/j.1365-2486.2007.01415.x
    [48] BAHN M, RODEGHIERO M, ANDERSON-DUNN M, et al. Soil respiration in European grasslands in relation to climate and assimilate supply [J]. Ecosystems, 2008, 11(8): 1352 − 1367. doi:  10.1007/s10021-008-9198-0
    [49] NOUVELLON Y, EPRON D, KINANA A, et al. Soil CO2 effluxes soil carbon balance and early tree growth following Savanna a afforestation in congo comparison of two site preparation treatments [J]. For Ecol Manage, 2008, 255(5): 1926 − 1936.
    [50] VARGAS R, ALLEN M F. Environmental controls and the influence of vegetation 1 type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration [J]. New Phytol, 2008, 179(2): 460 − 471. doi:  10.1111/j.1469-8137.2008.02481.x
    [51] BRÜMMER C, PAPEN H, WASSMANN R, et al. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (west Africa) [J]. Glob Biologychem Cycles, 2009, 23(1): GB1001.
    [52] MAJOR J, LEHMANN J, RONDON M, et al. Fate of soil-applied black carbon: downward migration, leaching and soil respiration [J]. Glob Chang Biol, 2010, 16(4): 1366 − 1379. doi:  10.1111/j.1365-2486.2009.02044.x
    [53] NOUVELLON Y, EPRON D, MARSDEN C, et al. Age-related changes in litter inputs explain annual trends in soil CO2 effluxes over a full Eucalyptus rotation after afforestation of a tropical Savanna [J]. Biogeochemistry, 2012, 111(1/3): 515 − 533.
    [54] FAN Z S, NEFF J C, HANAN N P. Modeling pulsed soil respiration in an African Savanna ecosystem [J]. Agr For Meteorol, 2015, 200: 282 − 292. doi:  10.1016/j.agrformet.2014.10.009
    [55] RAICH J W. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus, 1992, 44(2): 81 − 99. doi:  10.3402/tellusb.v44i2.15428
    [56] GAO Jinbo, ZHANG Yiping, SONG Qinghai, et al. Stand age-related effects on soil respiration in rubber plantations (Hevea brasiliensis) in Southwest China [J]. Eur J Soil Sci, 2019, 70(6): 1 − 13.
    [57] 吴玉, 郑新军, 李彦, 等. 荒漠草本植物在不同降雨模式下的光合响应和生物量分配策略[J]. 生态学杂志, 2013, 32(10): 2583 − 2590.

    WU Yu, ZHENG Xinjun, LI Yan, et al. Photosynthetic responses and biomass allocation strategies of desert herbaceous plants under different precipitation patterns [J]. Chin J Ecol, 2013, 32(10): 2583 − 2590.
    [58] 马志良, 高顺, 杨万勤, 等. 亚热带常绿阔叶林区凋落叶木质素和纤维素在不同雨热季节的降解特征[J]. 生态学杂志, 2015, 34(1): 122 − 129.

    MA Zhiliang, GAO Shun, YANG Wanqin, et al. Degradation characteristics of lignin and cellulose of foliar litter at different rainy stages in subtropical evergreen broadleaved forest [J]. Chin J Ecol, 2015, 34(1): 122 − 129.
    [59] 刘殿君, 吴波, 李永华, 等. 极端干旱区增雨对泡泡刺(Nitraria sphaerocarpa)群落土壤呼吸的影响[J]. 中国沙漠, 2013, 33(3): 788 − 796. doi:  10.7522/j.issn.1000-694X.2013.00113

    LIU Dianjun, WU Bo, LI Yonghua, et al. Effect of rain supplementation on soil respiration of Nitraria sphaerocarpa community in hyperarid area of Dunhuang, China [J]. J Desert Res, 2013, 33(3): 788 − 796. doi:  10.7522/j.issn.1000-694X.2013.00113
    [60] 王义东, 王辉民, 马泽清, 等. 土壤呼吸对降雨响应的研究进展[J]. 植物生态学报, 2010, 34(5): 601 − 610. doi:  10.3773/j.issn.1005-264x.2010.05.014

    WANG Yidong, WANG Huimin, MA Zeqing, et al. Review of response mechanism of soil respiration to rainfall [J]. Chin J Plant Ecol, 2010, 34(5): 601 − 610. doi:  10.3773/j.issn.1005-264x.2010.05.014
    [61] DAVIDSON E A, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biol, 1998, 4(2): 217 − 227. doi:  10.1046/j.1365-2486.1998.00128.x
    [62] 周非飞, 林波, 刘庆. 青藏高原东缘亚高山针叶林人工恢复过程中的土壤呼吸特征[J]. 应用生态学报, 2009, 20(8): 1783 − 1790.

    ZHOU Feifei, LIN Bo, LIU Qin. Characteristics of soil respiration in artificial restoration process of subalpine coniferous for est in eastern Qinghai-Tibet Plateau [J]. Chin J Appl Ecol, 2009, 20(8): 1783 − 1790.
    [63] 常建国, 刘世荣, 史作民, 等. 北亚热带-南暖温带过渡区典型森林生态系统土壤呼吸及其组分分离[J]. 生态学报, 2007, 27(5): 1791 − 1802. doi:  10.3321/j.issn:1000-0933.2007.05.015

    CHANG Jianguo, LIU Shirong, SHI Zuomin, et al. Soil respiration and its components partitioning in the typical for estecosystems at the transitional area from the northern subtropics to warm temperate, China [J]. Acta Ecol Sin, 2007, 27(5): 1791 − 1802. doi:  10.3321/j.issn:1000-0933.2007.05.015
    [64] HASHIMOTO S, TANAKA N, SUZUKI M, et al. Soil respiration and soil CO2 concentration in a tropical forest Thailand [J]. J For Res, 2004, 9(1): 75 − 79. doi:  10.1007/s10310-003-0046-y
    [65] 刘博奇, 牟长城, 邢亚娟, 等. 小兴安岭典型温带森林土壤呼吸对强降雨的响应[J]. 北京林业大学学报, 2016, 38(4): 77 − 85.

    LIU Boqi, MOU Changcheng, XING Yajuan, et al. Effect of strong rainfalls on soil respiration in a typical temperate forest in Lesser Xing’an Mountains, northeast China [J]. J Beijing For Univ, 2016, 38(4): 77 − 85.
    [66] NIE C, LI Y, NIU L, et al. Soil respiration and its Q10 response to various grazing systems of a typical steppe in Inner Mongolia, China [J]. PeerJ, 2019, 7: e7112. doi:  10.7717/peerj.7112
    [67] DAVIDSON E A, VERCHOT L V, CATT NIO J H, et al. Effects of soil Water content on soil respiration in forests and cattle pastures of eastern Amazonia [J]. Biogeochemistry, 2000, 48(1): 53 − 69. doi:  10.1023/A:1006204113917
    [68] 沙丽清, 郑征, 唐建维, 等. 西双版纳热带季节雨林的土壤呼吸研究[J]. 中国科学: 地球科学, 2004, 34(增刊 2): 167 − 174.

    SHA Liqing, ZHENG Zheng, TANG Jianwei, et al. Soil respiration of tropical seasonal rain forest in Xishuangbanna [J]. Sci China Ser D Earth Sci, 2004, 34(suppl 2): 167 − 174.
    [69] 李凌浩, 王其兵, 白永飞, 等. 锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J]. 植物生态学报, 2000, 24(6): 680 − 686. doi:  10.3321/j.issn:1005-264X.2000.06.007

    LI Linghao, WANG Qibing, BAI Yongfei, et al. Soil respiration of a Leymus chinensis grassland stand in the Xilin River basin as affected by over-grazing and climate [J]. Acta Phytoecol Sin, 2000, 24(6): 680 − 686. doi:  10.3321/j.issn:1005-264X.2000.06.007
    [70] KIM Y, NISHINA K, CHAE N, et al. Constraint of soil moisture on CO2 efflux from tundra lichen moss and tussock in council Alaska using a Hierarchical Bayesian Model [J]. Biogeosciences, 2014, 11(19): 5567 − 5579. doi:  10.5194/bg-11-5567-2014
    [71] WANG X, PIAO S, CIAIS P, et al. Are ecological gradients in seasonal Q10 of soil respiration explained by climate or by vegetation seasonality [J]. Soil Biol Biochem, 2010, 42(10): 1728 − 1734. doi:  10.1016/j.soilbio.2010.06.008
    [72] 刘运通, 张一平, 武传胜, 等. 模拟亚热带常绿阔叶林土壤温度与土壤异养呼吸对气候变暖的响应[J]. 生态学杂志, 2016, 35(7): 1799 − 1806.

    LIU Yuntong, ZHANG Yiping, WU Chuansheng, et al. Simulation of the responses of soil temperature and soil heterotrophic respiration to climate warming in a subtropical evergreen broad-leaved forest [J]. Chin J Ecol, 2016, 35(7): 1799 − 1806.
  • [1] 张勇, 胡海波, 王增, 黄玉洁, 吕爱华, 张金池, 刘胜龙.  凤阳山4种森林土壤在不同温度培养下活性有机碳的变化 . 浙江农林大学学报, 2018, 35(2): 243-251. doi: 10.11833/j.issn.2095-0756.2018.02.007
    [2] 竹万宽, 陈少雄, RogerARNOLD, 王志超, 许宇星, 杜阿朋.  不同种桉树人工林土壤呼吸速率时空动态及其影响要素 . 浙江农林大学学报, 2018, 35(3): 412-421. doi: 10.11833/j.issn.2095-0756.2018.03.004
    [3] 王鑫朝, 韩一林, 李美, 王小东, 汪俊宇, 马元丹, 宝音陶格涛, 高岩, 张汝民.  放牧对冷蒿根际土壤微生物量碳、氮和土壤呼吸的影响 . 浙江农林大学学报, 2017, 34(5): 798-807. doi: 10.11833/j.issn.2095-0756.2017.05.005
    [4] 杨升, 陈秋夏, 王金旺, 李效文, 夏海涛, 包考松, 郑托.  浙南海涂围垦区土壤品质综合评价 . 浙江农林大学学报, 2016, 33(6): 961-968. doi: 10.11833/j.issn.2095-0756.2016.06.006
    [5] 张远, 李火根, 蒋祥英, 戴其生, 张焕朝1, 宋宏林, 张井义.  土壤因子对杂交鹅掌楸幼林生长的影响 . 浙江农林大学学报, 2016, 33(1): 94-101. doi: 10.11833/j.issn.2095-0756.2016.01.013
    [6] 伍海兵, 李爱平, 方海兰, 郝冠军.  绿地土壤孔隙度检测方法及其对土壤肥力评价的重要性 . 浙江农林大学学报, 2015, 32(1): 98-103. doi: 10.11833/j.issn.2095-0756.2015.01.014
    [7] 张涛, 李永夫, 姜培坤, 周国模, 刘娟.  土地利用变化影响土壤碳库特征与土壤呼吸研究综述 . 浙江农林大学学报, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [8] 梁晶, 方海兰, 郝冠军, 孙倩.  上海城市绿地不同植物群落土壤呼吸及因子分析 . 浙江农林大学学报, 2013, 30(1): 22-31. doi: 10.11833/j.issn.2095-0756.2013.01.004
    [9] 黄石德.  降水和凋落物对木荷马尾松混交林土壤呼吸的影响 . 浙江农林大学学报, 2012, 29(2): 218-225. doi: 10.11833/j.issn.2095-0756.2012.02.011
    [10] 唐洁, 李志辉, 汤玉喜, 吴敏, 李永进, 王胜.  洞庭湖区滩地不同土地利用类型土壤呼吸动态 . 浙江农林大学学报, 2011, 28(3): 439-443. doi: 10.11833/j.issn.2095-0756.2011.03.014
    [11] 叶耿平, 刘娟, 姜培坤, 周国模, 吴家森.  集约经营措施对毛竹林生长季土壤呼吸的影响 . 浙江农林大学学报, 2011, 28(1): 18-25. doi: 10.11833/j.issn.2095-0756.2011.01.004
    [12] 周国模, 刘恩斌, 佘光辉.  森林土壤碳库研究方法进展 . 浙江农林大学学报, 2006, 23(2): 207-216.
    [13] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分状况的调查分析 . 浙江农林大学学报, 2006, 23(2): 140-144.
    [14] 邓恒芳, 王克勤.  土壤水分对石榴光合速率的影响 . 浙江农林大学学报, 2005, 22(3): 277-281.
    [15] 李淑芬, 俞元春, 何晟.  南方森林土壤溶解有机碳与土壤因子的关系 . 浙江农林大学学报, 2003, 20(2): 119-123.
    [16] 姜培坤, 徐秋芳, 俞益武.  土壤微生物量碳作为林地土壤肥力指标 . 浙江农林大学学报, 2002, 19(1): 17-19.
    [17] 丁爱芳, 俞元春, 陈萍萍.  土壤铝对林木根系的影响 . 浙江农林大学学报, 2001, 18(2): 119-122.
    [18] 姜培坤, 俞益武, 张立钦, 许小婉.  雷竹林地土壤酶活性研究 . 浙江农林大学学报, 2000, 17(2): 132-136.
    [19] 宋漳.  不同林分土壤放线菌的分布及其与土壤因子的关系 . 浙江农林大学学报, 1997, 14(1): 41-44.
    [20] 罗汝英.  晚近北美森林土壤研究动态 . 浙江农林大学学报, 1993, 10(2): 203-208.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190647

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020/5/1

计量
  • 文章访问数:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-04
  • 修回日期:  2020-04-30

元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征

doi: 10.11833/j.issn.2095-0756.20190647
    基金项目:  国家自然科学基金资助项目(41975147,41961144017,U1602234,41405143,31560189);云南省应用基础研究计划面上项目(2017FB077);“十三五”国家重点研发计划(2016YFC0502105);国家科技基础性工作专项子课题(2015FY11030001-4);云南省教育厅科学研究基金项目(2019Y0118);中国科学院“一三五”专项(2017XTBG-F01,2017XTBG-T01)
    作者简介:

    杨开业,从事土壤温室气体研究。E-mail: kaiyeyang@126.com

    通信作者: 巩合德,副教授,从事森林生态学研究。E-mail: gonghede3@163.com。李敬,讲师,从事温室气体研究。E-mail: lijing@qau.edu.cn
  • 中图分类号: S718.5

摘要:   目的  土壤呼吸对大气中二氧化碳浓度有重要的调节作用。萨王纳生态系统土壤呼吸是全球温室气体主要排放源之一,但是其排放特征与主要影响因子尚不清楚。  方法  以元江干热河谷(萨王纳)稀树灌草丛生态系统为对象,利用静态箱法,从2014年6月到2015年6月对元江土壤呼吸进行测量,研究了元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征及其影响因子。  结果  元江干热河谷稀树灌草丛生态系统土壤温度、水分和呼吸速率具有明显的季节变化,雨季高于干季。土壤呼吸速率与土壤温度和土壤湿度分别呈指数和抛物线关系,土壤5和10 cm处温度Q10分别为1.73和1.98,小于全球均值2.0,采用10 cm土壤温度能更好地模拟土壤呼吸。通过土壤温度、湿度与土壤呼吸双因子拟合分析得出元江萨王纳生态系统的土壤呼吸主要受到水分条件的制约;生态系统土壤呼吸年排放量为4.20 t·hm−2·a−1,其中雨季2.71 t·hm−2,占全年碳排放总量的64.5 %,干季的二氧化碳排放量为1.49 t·hm−2,占全年碳排放总量的35.5 %。全球萨王纳生态系统土壤呼吸均值为8.16 t·hm−2·a−1  结论  元江土壤呼吸总量在全球萨王纳生态系统中处于较低位置,主要是因为元江萨王纳生态系统降水量较全球萨王纳低,而降水量与萨王纳地区土壤呼吸呈极显著正相关关系(R2=0.61,P<0.001)。图4表1参72

English Abstract

杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平. 元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190647
引用本文: 杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平. 元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190647
YANG Kaiye, GONG Hede, LI Jing, LIU Yuntong, SHA Liqing, SONG Qinghai, JIN Yanqiang, YANG Daxin, LI Peiguang, WEN Guojing, CHEN Aiguo, PANG Zhiqiang, ZHANG Yiping. Dynamic characteristics of soil respiration of Savanna ecosystem in dry hot valley of Yuanjiang[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190647
Citation: YANG Kaiye, GONG Hede, LI Jing, LIU Yuntong, SHA Liqing, SONG Qinghai, JIN Yanqiang, YANG Daxin, LI Peiguang, WEN Guojing, CHEN Aiguo, PANG Zhiqiang, ZHANG Yiping. Dynamic characteristics of soil respiration of Savanna ecosystem in dry hot valley of Yuanjiang[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190647

返回顶部

目录

    /

    返回文章
    返回