-
转座子(transposable elements, TEs)是一种自私的基因组“寄生虫”,能够增加拷贝数并改变其在宿主基因组中的位置[1]。转座子由于具有突变的可能,会对邻近基因表达产生潜在的危害,并导致染色体重排,对基因组的稳定性构成威胁[2-4]。转座子根据其转座中间产物被分为2类,其中Ⅰ类转座子包括复制黏贴式反转录转座子(retrotransposons, REs)[5],Ⅱ类转座子包括剪切黏贴式转座子[6]。Ⅰ类转座子根据其内部的结构可以分为LTR类(long terminal repeat retrotransposons)[6]、DIRS类(dictyostelium intermediate repeat sequence elements)[7]、PLE类(penelope-like elements)[8]、LINE类(long interspersed nuclear elements)[9]、SINE类(short interspersed nuclear elements)[10]。其中LTR反转录转座子是至今为止研究最多的一类[6]。LTR反转录转座子具有4个结构特点。第一,在序列两端有1对靶位点重复序列(target site repeats,TSD),约4~6 bp[11];第二,5′端和3′端有1对长为几十到几千bp不等高度相似的长末端重复序列[12];第三,LTR主要包括GAG衣壳蛋白编码区和POL多蛋白编码区(polyprotien),其中POL包括RH核糖核苷酸酶(ribonuclease h,RNaseH)、RT反转录酶(reverse transcriptase)、INT整合酶(integrase)和AP蛋白酶(aspartic proteinase)。还有一些Retrovirus和ENV超家族(superfamily)的LTR含有ENV序列(envelope protein, EN或ENV)[13];第四,在5′端附近有1个引物结合位点(primer binding site,PBS),可调控其基因组RNA反转录所必需的tRNA引物,它以染色体外线性DNA(extrachromosomal linear DNA, eclDNA)的形式产生LTR反转录转座子生命周期中间体。在3′端附近有1个富嘌呤位点(poly purine trait,PPT)[14],协助反转录的完成。根据LTR反转录转座子开放阅读框(open reading frames,ORF)的完整性分为自主LTR反转录转座子和非自主LTR反转录转座子[15]。自主LTR反转录转座子又可以根据POL中RT、INT和RH编码序列的排列方式,分为Ty1-copia 超家族(5′-INT-RT-RH-3′)和Ty3-gypsy超家族(5′-RH-RH-INT-3′)[16]。根据每个超家族的序列同源性(80-80-80的分类规则[17])可以分为不同的家族。根据LTR反转录转座子的同源性、蛋白结构、进化关系可以划分为不同的谱系,如梨Pyrus基因组中被划分为Ale、Ivana、Bianca、Angela、Tar、Tat、Athila、Renia、Crm、Galadriel、Tekay等11个谱系[18]。LTR反转录转座子的活性包括转录活性和转座活性。转录是转座的第1步,许多LTR反转录转座子在植物杂交、多倍体化或在环境挑战下发生去甲基化,被转录激活[19]。转座活性不仅包括转录活性,还受转录后调控,如植物基因组为了抑制转座子的活性通过转录基因沉默(transcriptional gene silencing, TGS)机制抑制它们的能力[20]。如果TGS得到缓解,则受21~22个核苷酸作用的转录后基因沉默机制(post-transcriptional gene silencing, PTGS)会将靶向转座子转录物进行降解[21],所以在实验条件下LTR反转录转座子很难被转座激活。在整个植物王国中LTR反转录转座子的进化特别成功,不断复制转座,导致基因组大小增加,基因组尺寸产生差异。在被子植物基因组之间由于几个LTR反转录转座子家族的扩增,产生一些巨大的基因组。例如2 400 Mb玉米Zea mays[22]和400 Mb水稻Oryza sativa[23]的基因组中LTR反转录转座子家族数相同,但是玉米基因组中5个谱系的LTR反转录转座子拷贝数较高。即使是亲缘关系很近的品种,LTR反转录转座子也会促使它们的基因结构产生巨大差异。如玉米与大刍草Zea mexicana是近亲,但是大刍草的基因组比玉米大1倍[24]。LTR反转录转座子在植物基因组中处于动态变化的过程,不仅会扩增,也会丢失,不平衡重组(illegitimate recombination)和非法重组(unequal recombination)活动就是丢失的主要原因[25-26]。不平衡重组和非法重组的产物主要包括含有TSD位点的solo LTR,不含TSD位点的Truncated LTR[27]。预测LTR反转录转座子可以通过4种方式[28]:比较基因组法(comparative genomic methods)[29]、重复序列从头算起法(de novo repeat discovery)[30]、同源比对法(homology-based methods)[31]、基于结构预测法(structure-based methods)。基于结构预测法是通过LTR反转录转座子的序列结构和转座机制分析来捕获,如LTR_STRUC、LTR_FINDER、LTRharvest、LTR_par、LTR_Rho等[32]。毛竹Phyllostachys edulis具有较高的经济和生态价值,其种植面积在中国的竹子总种植面积(443 万hm2)中占73.76%[33]。2018年第2版毛竹基因组的公布[34]为深入分析毛竹基因组中LTR反转座子提供了良好的条件。本研究运用了LTRharvest的方法[35],对第2版毛竹基因组中的LTR反转录转座进行预测,并对LTR反转录转座子的结构、在基因组中的分布特征、插入时间等进行系统分析,以期能了解毛竹LTR反转录转座子对基因组的影响。
-
第2版毛竹基因组序列、基因组注释文件来自毛竹基因组数据库(http://bamboo.bamboogdb.org/#/download)[34]。先利用LTRharvest软件[35]预测毛竹基因组LTR反转录转座子,利用cd-hit根据80-80-80的分类规则[17]进行序列同源性聚类,然后利用LTRdigestion[36]注释各个LTR反转录转座子结构域。接着根据LTR反转录转座子的POL编码区RT、INT和RH的顺序将其分为Ty1-Copia(INT-RT-RH)和Ty3-Gypsy (RT-RH-INT)2个超家族[16]。根据序列中的GAG和POL编码区与Gypsy Database 2.0网站中(http://gydb.org/index.php/Phylogeny: POL_LTR_retroelements)植物典型的Tork、Reftrofit、Sire、Oryco、Del、Reina、Crm、Tat、Galadriel和Athila 谱系对应编码区的同源性,进一步将2个超家族分为10个谱系[35]。最后利用RepeatMakser软件分析LTR反转录转座子在毛竹基因组中的含量[31]。
-
使用MA等[37]对每条结构完整的毛竹LTR反转录转座子的插入时间进行计算:①对每条结构完整的LTR反转录转座子的两端LTR序列利用MUSCLE软件[38](使用默认参数)进行比对;②利用JUCKES-CANTOR的方法[39]计算碱基突变频率(K);③利用公式T=K/(2r)计算插入时间,T表示时间,r表示生物钟,r=1.3×10−8 bp·a−1[37]。
-
由表1所示:得到1 014 565条LTR反转录转座子,占整个毛竹基因组的54.97%。毛竹中LTR反转录转座子比例与其他基因组相比,低于玉米基因组的70.1%[22],相近于高粱Sorghum bicolor基因组的55%[40],远高于水稻基因组的26%[23]。其中两端具有完整LTR序列,编码结构域完整的LTR反转录转座子(full-length LTR)有7 731条,两端具有完整LTR序列,编码结构域不完整的LTR反转录转座子(solo LTR)有13 656条(其余不含TSD位点的LTR反转录转座子忽略不计)。然后按照WICKER等[16]提出的真核生物转座子的分类方法,将blastn(all-vs-all)的方法和80-80-80的规则相结合,对7 731条完整的LTR反转录转座子进行分类,共分为1 562个家族。
表 1 毛竹LTR反转录转座子超家族分类
Table 1. Classification of LTR retrotransposons superfamily of moso bamboo genome
超家族 谱系 家族a 结构 数量/个 全长/bp 百分比b/% Ty1-copia Tork 236 GAG-PR-INT-RT-RH 145 708 124 219 995 6.51 Retrofit 342 GAG-PR-INT-RT-RH 41 965 43 615 815 2.29 Sire 136 GAG-PR-INT-RT-RH-ENV 223 386 210 097 734 11.01 Oryco 105 GAG-PR-INT-RT-RH 22 078 22 854 591 1.20 合计 819 433 137 400 788 135 21.01 Ty3-gypsy Del 207 GAG-PR-RT-RH-INT-CHR 295 222 334 005 916 17.51 Reina 249 GAG-PR-RT-RH-INT-CHR 27 803 39 235 939 2.06 Crm 47 GAG-PR-RT-RH-INT 40 781 44 298 955 2.32 Tat 238 GAG-PR-RT-RH-INT 217 288 230 055 053 12.06 Galadriel 1 GAG-PR-RT-RH-INT-CHR 23 51 248 0.00 Athila 1 GAG-PR-RT-RH-INT-ENV 311 257 970 0.01 合计 743 581 428 647 905 081 33.96 总计 1 562 1 014 565 1 048 693 216 54.97 说明:a表示每个谱系的数量;b表示在毛竹基因组中LTR反转录转座子所占的比例 毛竹LTR反转录转座子分为Ty1-copia和Typ3-gypsy 2个超家族,在1 562个LTR反转录转座子家族中有819个家族属于Ty1-Copia 超家族,共包括433 137条序列,长度为400 788 135 bp,占毛竹基因组的21.01%。743个家族属于Ty3-Gypsy超家族,共包括581 429条序列,长度为647 905 081 bp,占毛竹基因组的33.96%(表2)。Ty3-gypsy与Ty1-copia数量之比为1.3∶1.0,低于大豆Glycine max(1.4∶1.0)[19]和玉米(1.6∶1.0)[22],远低于水稻(4.9∶1.0)[41]和高粱(3.7∶1.0)[40],但远高于苜蓿Medicago sativa(0.3∶1.0)[42]。
表 2 毛竹LTR反转录转座子谱系特征
Table 2. Structure of LTR retrotransposon family of moso bamboo
谱系 家族a 百分比c/% 全长LTRd Solo LTRe 全长LTR/Solo LTR 全长 LTR+Solo LTR 百分比f/% Tork 236 28.82 1 169 1 492 1.28 2 661 28.76 Retrofit 342 41.76 302 1 158 3.83 1 460 15.78 Sire 136 16.61 464 3 139 6.77 3 603 38.95 Oryco 105 12.82 521 1 006 1.93 1 527 16.51 Ty1-copia 819 100.00 2 456 6 795 2.77 9 251 100.00 Del 207 27.86 2 102 2 992 1.42 5 094 41.97 Reina 249 33.51 495 1 245 2.52 1 740 14.34 Crm 47 6.33 510 1 352 2.65 1 862 15.34 Tat 238 32.03 2 168 1 251 0.58 3 419 28.17 Galadriel 1 0.13 0 7 0 7 0.06 Athila 1 0.13 0 14 0 14 0.12 Ty3-gypsy 743 100.00 5 275 6 861 1.30 12 136 100.00 总计 1 562 100.00 7 731 13 656 1.77 21 387 100.00 说明:a表示每个谱系的数量;c表示每个谱系在超家族中所占的比例;d表示结构完整的LTR反转录转座子(full-length LTR),包含 两端LTR序列和完整的编码结构域[44];e表示仅含有两端LTR序列,编码结构域有缺失的LTR反转录转座子(solo LTR)[44];f表 示每个谱系中full-length LTR和solo LTR在超家族中所占的比例 根据LTR反转录转座子不同家族之间的进化关系和结构特征,Ty1-copia超家族和Ty3-gypsy超家族可以被分为多个不同的谱系[42-43]。根据Gypsy Database2.0[37]中植物典型的谱系序列特征,对毛竹LTR反转录转座子进行分类,将Ty1-copia超家族分为4个谱系,分别为Tork、Retrofit、Sire、Oryco;Ty3-gypsy超家族分为6个谱系,分别为Del、Reina、Crm、Tat、Galadriel、Athila。其中Tork包含236个家族,Reftrofit包含342个家族,Sire包含136个家族,Oryco包含105个家族,Del包含207个家族,Reina包含249个家族,Crm包含47个家族,Tat包含238个家族,Galadriel包含1个家族,Athila包含1个家族。在Ty1-copia超家族的4个谱系中,Sire的含量最高(达11.01%),紧随其后的是Tork(6.51%)。在Ty3-gypsy超家族的4个谱系中,Del的含量最高(达17.51%),紧随其后的是Tat(12.06%)(表1)。Tat和Del在植物中普遍存在并且是植物所特有的。ENV域在Sire中被识别,CHR域在Del和Reina中被识别(表1~2)。
-
在转座过程中,PBS是LTR反转录转座子反转录开始的重要位点,因为LTR反转录转座子开始反转录时tRNA会结合到RNA的PBS处,然后通过反转录酶合成cDNA[45]。不同超家族和谱系的LTR反转录转座子对PBS具有不同的偏好性。由表3所示:MetCAT24是转座子反转过程中使用频率最高的PBS位点,占4.05%,比其他的位点要高,其次是LysTTT和LysTTT10。表3中Ty1-copia和Ty3-gypsy超家族对PBS位点的偏好性呈相反趋势,MetCAT24是Ty1-copia超家族中使用最多的PBS位点,LysTTT是Ty3-gypsy超家族使用最多的PBS位点,但在Ty1-copia超家族中频率很低,仅有1个。LTR序列是LTR反转录转座子中特有的,它们位于LTR反转录转座子的5′端和3′端,是一对高度相似的序列,通常较长的LTR反转录转座子具有更长的LTR序列,结构也更加完整。所以把5′端LTR作为参照,对LTR序列长度进行统计,结果如图1显示。对LTR反转录转座子而言,LTR序列长度与其全长序列的长度成正比。
表 3 LTR反转录转座子PBS使用统计
Table 3. Usage status of PBS in LTR retrotransposons
tRNA 数量/个 百分比/% Ty1-copia
使用比例/%Ty3-gypsy
使用比例/%MetCAT24 1 383 4.05 1.70 0.83 LysTTT 486 1.42 0.00 1.10 LysTTT10 285 0.83 0.31 0.03 LeuAAG21 131 0.38 0.00 0.15 LysTTT3 111 0.32 0.16 0.01 LeuTAG9 66 0.19 0.07 0.01 -
对21 387个含有TSD位点的毛竹LTR反转录转座子的插入时间进行统计,如图2和图3所示。毛竹LTR反转录转座子的插入时间集中于0~2.0 Ma,其中插入最旺盛的是在1.0~1.5 Ma,有4 426 个,占21.06%,插入较少的是在3.0 Ma之前,有891个,仅占2.61%,插入时间为0的有508个(占1.4%),说明这部分LTR反转录转座子可能还具有转座潜力。Del转座频率最高,有4 777个拷贝,占22.62%,且在0.5~1.5 Ma转座活动最为旺盛,其次为Sire和Tat。而Retrofit、Oryco、Reina、Crm转座频率都较低,Retrofit最低,仅有1 527个拷贝,占6.91%。以上数据说明毛竹基因组中LTR反转录转座子在0~2.0 Ma内大量复制增长,且还处于不断增长的状态,但增长趋势在减弱。
-
HU等[46]利用第1版毛竹基因组数据分析了LTR反转录转座子的分布结构和进化模式。但由于第1版毛竹基因组数据的碎片化严重,限制了对LTR反转录转座子的完整预测。毛竹第2版基因数据的覆盖范围、精准度都有所提高,完整性达95.2%[34],相比玉米(92.2%)[22]要高,与水稻(95.6%)[23]接近,所以本研究的结果准确性较高。然而,LTR反转录转座子是一种重复序列[47],软件无法准确逐条识别,产生假阴性。在不同的基因组中LTR反转录转座子所占的比例不同,如在酵母基因组中占3%[48],在玉米基因组中占70.1%[22],分布特点也有所差异,且基因组中还存在其他重复序列,所以也很容易产生假阳性。因此,利用较完整的毛竹第2版基因组,能在一定程度上避免误差。
在本研究中,通过对第2版毛竹基因组的注释共得到1 014 565条LTR反转录转座子(表1),占基因组的54.7%,较对第1版毛竹基因组注释的结果(1 954 616,39.83%,不包括未知LTR)数量有所下降,比例有所上升。对7 731条结构完整的LTR反转录转座子进行家族分类,共划分为1 562个家族,较第1版(959个)也有所上升。通过对LTR反转录转座子的结构完整性判断,solo-LTR较完整LTR反转录转座子比例更高(S/F为1.77),说明可能毛竹LTR反转录转座子不平衡重组和非法重组的活动频率较高,这可能是由于毛竹基因组在不断进化的过程中对转座子产生抑制,碎片化严重。但在第1版毛竹基因组中完整的LTR反转录转座子的占比更高(S/F为0.28),这是由于第1版基因组不完整所以信息显示不全面。总的来说,第2版毛竹基因组在转座子的注释、鉴定、家族和超家族的分类等方面都相比第1版毛竹基因组更加准确,但是依然存在数万条短的组装碎片,因此本研究对毛竹LTR反转录转座子的注释仍是保守值,随着毛竹基因组的更加完善会有更多的LTR反转录转座子被发现。
-
根据Gypsy Database 2.0网站中植物典型的谱系序列特征,毛竹LTR反转录转座子共分为Sire、Oryco、Retrofit、Tork、Crm、Del、Reina、Tatol、Galadriel、Athila等10个谱系。其中Retrofit、Reina和Tat是数量最多的3个谱系。Galadriel和Athila在植物界中虽然广泛存在[15],但在毛竹基因组发现较少。一方面可能是Athila的大小通常为8.5~12.0 kb,并且具有相对较长的LTR序列(1.5~2.5 kb),很难被LTRhavest程序识别[35];另一方面,毛竹基因组的不完整和碎片化,可能会遗漏Galadriel和Athila。
将毛竹LTR反转录转座子的谱系与水稻[47]、拟南芥Arabidopsis thaliana[49]进行比较,发现毛竹的10个谱系包含了双子叶植物和单子叶植物共同的进化特征,这是它们分裂后分化的结果[50],其中Tork是例外,它在毛竹、水稻、拟南芥中并无明显差异,这表明Tork相对其他谱系更加保守。并且毛竹与水稻亚科在LTR反转录转座子都为多拷贝和多进化谱系并存,而拟南芥的谱系数则相对较少[49],这可能是由于不同进化速率导致的结果。
在不同谱系之间,LTR反转录转座子增殖差异较大。在毛竹Ty1-copia超家族中,Retrofit的LTR反转录转座子家族数量最多(342个),但拷贝数仅占15.78%,相比之下,Sire只有136个家族,拷贝数却达11.1%,占比最高。这种情况在Ty3-gypsy超家族更为显著,Reina包含249个家族,拷贝数却仅占2.06%,Crm只有47个家族,拷贝数所占比例比Reina还高一些。各谱系中LTR反转录转座子的数量反映了它们最近的扩增情况,而各谱系中家族的数量则代表了历史上不同的分化情况。因此,不同谱系的LTR反转录转座子在进化过程中具有不同的分化和扩增活性。
-
LTR反转录转座子两端的LTR序列是相同的,但在不断转座过程中,LTR序列会发生突变并分化,根据剪辑替换速率,可以得出LTR反转录转座子的插入时间[31]。毛竹LTR反转录转座子的插入时间在0~1.5 Ma呈直线式递增,但在大于1.5 Ma呈指数衰减,总体上呈现抛物线形式,与小麦Triticum aestivum [51]、桑树Morus notabilis[52]类似,这说明毛竹LTR反转录转座子的插入时间主要集中于0~2.0 Ma,在1.5 Ma处于转座活动爆发期,但其增长趋势处于回缩的状态。
毛竹LTR反转录转座子在大于5.0 Ma区域缺失,可能原因:第一,5.0 Ma之前的老LTR反转录转座子与年轻的LTR反转录转座子发生重组,所以无法识别[42];第二,根据PENG等[33]的研究,在7.0~12.0 Ma中,毛竹基因组发生了四倍体事件,之后又不断进化为二倍体,在这个过程中毛竹基因组经历了较大的选择压力,所以5.0 Ma之前的毛竹LTR反转录转座子在基因组中被删除或严重破坏,无法通过结构预测和同源性比对来鉴定。
Genome-wide characteristics and evolution analysis of long terminal repeat retrotransposons in Phyllostachys edulis
-
摘要:
目的 研究毛竹Phyllostachys edulis基因组中的长末端重复序列反转录转座子(long terminal repeat retrotransposons, LTR-REs)的特征,为今后利用LTR反转录转座子对毛竹基因组的功能和对竹种资源遗传多样性的研究奠定基础。 方法 通过生物信息学方法,利用LTRharvest和RepeatMakser软件对第2版毛竹基因组中的LTR反转录转座子进行全面注释与分类,并对得到的LTR反转录转座子的分布特征、进化特性和插入时间进行分析。 结果 在毛竹基因组中共注释得到1 014 565个LTR反转录转座子,1 562个家族,占毛竹基因组的54.97%。其中solo LTR反转录转座子与完整LTR反转录转座子(S/F)的比例较高(约1.77∶1.00),表明在毛竹LTR反转录转座子中可能发生了相对较高频率的非法重组和不平衡重组。毛竹LTR反转录转座子分为Ty1-copia和Ty3-gypsy超家族,Tork、Reftrofit、Sire、Oryco、Del、Reina、Crm、Tat、Galadriel、Athila等10个谱系。毛竹LTR反转录转座子的Ty1-copia和Ty3-gypsy超家族对PBS位点的偏好性呈相反趋势,较长的LTR反转录转座子具有更长的LTR序列,结构也更加完整。毛竹LTR反转录转座子的插入时间主要集中在0~2.0 Ma,且还处于不断缓慢增长的状态。 结论 第2版毛竹基因组的高质量组装,能更好地注释和分析毛竹基因组中的LTR反转录转座子。基于结构预测的LTRharvest法,能更精准地预测毛竹LTR反转录转座子。不同谱系的毛竹LTR反转录转座子在进化过程中具有不同的分化和扩增活性。毛竹LTR反转录转座子总体上处于不断扩增状态,这是导致毛竹基因组较大的主要原因之一。图3表3参52 Abstract:Objective This study aims to analyze the characteristics of long terminal repeat retrotransposons (LTR-REs) in moso bamboo genome, so as to promote the research on the function of LTR-REs in moso bamboo genome and the genetic diversity of bamboo resources. Method Based on bioinformatics methods, LTR retrotransposons in the second edition of moso bamboo genome were annotated and classified by LTRharvest and RepeatMakser software, and the distribution characteristics, evolution characteristics and insertion time of the obtained LTR retrotransposons were analyzed. Result A total of 1 014 565 LTR retrotransposons and 1 562 families were identified, accounting for 54.97% of moso bamboo genome. Among them, the ratio of solo LTR retrotransposons to intact LTR retrotransposons (S/F) was relatively high (about 1.77∶1.00), indicating that a higher frequency of illegitimate recombination and unbalanced recombination might have occurred in the LTR-REs of moso bamboo genome. LTR retrotransposons were divided into Ty1-copia and Ty3-gypsy superfamilies, and ten lineages included Tork, Reftrofit, Sire, Oryco, Del, Reina, Crm, Tat, Galadriel, and Athila. The preference of Ty1-copia and Ty3-gypsy superfamiles for PBS sites showed an opposite tendency. The longer LTR retrotransposons had longer LTR sequences and more complete structures. The insertion time of LTR retrotransposon in moso bamboo was mainly concentrated in the 0−2.0 Ma region, and it was still in a state of slow growth. Conclusion The high-quality assembly of the second edition of moso bamboo genome can better annotate and analyze the LTR retrotransposons in moso bamboo genome. The LTR harvest method based on structure prediction can more accurately predict the LTR retrotransposons of moso bamboo. The LTR retrotransposons of different lineages have different differentiation and amplification activities during evolution. LTR retrotransposons are generally in a state of continuous amplification, which is one of the reasons for the large genome of moso bamboo. [Ch, 3 fig. 3 tab. 52 ref.] -
Key words:
- LTR retrotransposons /
- Phyllostachys edulis /
- genome /
- evolution
-
生态化学计量学主要关注生物地球化学循环过程中营养元素间的相互作用与平衡[1],从植物生态学、土壤学等多学科角度探究植物器官、物种、群落和生态系统的元素计量关系和规律,广泛用于判断植物体和群落的养分限制状况[2]、指导生态系统养分管理[3]、预测全球养分变化背景下的植被动态研究[4]。植物-凋落物-土壤是陆地生态系统重要的养分储存库,三者之间彼此影响和制约。植物养分输移活动通过叶片从大气中固定碳(C),依靠枝在植物各器官间进行养分运转,借助根系吸收和存储土壤中的养分,最后以凋落物淋溶、光降解、微生物分解和根系分泌等方式将C、氮(N)、磷(P)等元素归还土壤[5],因此,以上循环形成了植物-凋落物-土壤的C、N、P生态系统组分连续体,其关联性有助于深入认识植被各组分对营养元素的利用与分配规律。目前,研究多集中在区域土壤与植物单一器官(叶片)的生态化学计量比研究,如梁楚欣等[6]探究了滇东石漠化区不同植被恢复模式下土壤C、N、P质量分数及化学计量比的差异,王浩伊等[7]研究了大兴安岭不同生活型针叶林生态化学计量与生长阶段的关系,而对于植物多器官(叶、枝、根)-凋落物-土壤为整体的相关研究较少。因此,阐明植物-凋落物-土壤生态系统养分循环及调控机制,可揭示生态系统植物-凋落物-土壤之间的物质循环特征。黄土高原生态环境敏感,独特的地貌导致水土流失严重[8]。植被恢复能有效防治水土流失,随着人工恢复为主的“退耕还林还草”工程的实施[9],黄土高原植被覆盖率、土壤质量明显提升,形成了自然恢复和人工恢复为主的植被类型[10]。以往对黄土高原植被恢复的生态化学计量研究,集中在单一树种不同器官[11]、不同密度人工林土壤[12]等方面,关于不同植被恢复类型下植物各器官生态化学计量特征、凋落物与土壤生态化学计量特征关系的研究仍较少。鉴于此,为系统了解植被恢复过程中植物与土壤的生态过程,本研究以黄土丘陵区人工恢复植被油松Pinus tabuliformis林、刺槐Robinia pseudoacacia林、侧柏Platycladus orientalis林为研究对象,以自然恢复植被辽东栎Quercus liaotungensis天然次生林为对照,系统研究乔木叶、枝、根,凋落物和土壤生态化学计量特征,揭示黄土高原生态系统的生态过程、养分循环和限制因素,为黄土高原人工林植被恢复工作和森林经营改造提供科技支撑。
1. 研究地区与方法
1.1 研究区概况
研究区位于山西省临汾市吉县森林生态系统国家野外科学观测研究站所在地的蔡家川流域(35°53′~36°21′N,110°27′~110°07′E),该区地处黄土高原东南部半湿润地区,属于典型的黄土残塬沟壑区,季风气候显著,年平均气温为10 ℃,年平均降水量为579 mm,年平均蒸发量达1 729 mm,降水集中在6—9月,海拔为400~1 820 m。本研究选取蔡家川流域具有典型代表性的人工油松林、刺槐林、侧柏林、辽东栎天然次生林,林下植物主要为丁香Syringa oblata、黄刺玫Rosa xanthina、绣线菊Spiraea salicifolia、青蒿Artemisia caruifolia、连翘Forsythia suspensa、梾木Cornus macrophylla、糙苏Phlomoides umbrosa、紫菀Aster tataricus等。自1991年起,在蔡家川流域内进行退耕还林的全面植被恢复工作,流域内梁峁坡沟综合规划设计,营造人工林,保护天然林,栽植了油松、刺槐及侧柏等适应性强、耐干旱瘠薄的树种,该人工林为生态公益林,没有进行间伐、施肥等人工经营措施,天然林采取自然恢复的方式。研究区样地基本特征见表1。
表 1 研究区样地基本特征Table 1 Basic information about the sampling site in the study area林分 海拔/m 坡度/(°) 坡向 平均树高/m 平均胸径/cm 凋落物厚度/cm 郁闭度/% 林分密度/(株·hm−2) 油松林 1 147 20 北 10.5 14.0 2.4 50 1 680 刺槐林 1 123 7 东 10.5 12.9 2.9 71 1 310 侧柏林 1 186 14 西北 7.5 8.4 1.0 49 1 200 辽东栎林 1 141 25 东南 9.3 11.2 3.1 67 1 150 1.2 样品采集与处理
于2022年7—8月进行外业调查。在每个长势良好的人工油松林、刺槐林、侧柏林和天然次生林辽东栎林等典型样地,分设3个乔木样方(20 m×20 m),在样方内进行每木检尺,调查郁闭度、树高和胸径等指标。样方内挑选3株长势均匀的标准木,在树冠处同一层东、西、南、北4个方位采集健康成熟的叶片与细枝(直径<2 cm),在标准木的冠幅范围内随机钻取3个0~60 cm的土芯,用冲洗法获取根样品(直径<2 mm),分别混匀后装入塑封袋;在样方内按对角线法选取3个1 m×1 m的具有代表性的凋落物样方,采集枯枝落叶(未分解、半分解和已分解),混匀后装入塑封袋;五点取样法采集0~20 cm土层土壤样品,混匀后装入塑封袋。以上采集的样品带回实验室后,叶、枝、根在100 ℃杀青15 min,随后降温至65 ℃恒温,将叶、枝、根与凋落物烘干至恒量,粉碎,过0.15 mm筛。土壤样品自然风干后,研磨过0.25 mm筛。采用元素分析仪测定全碳、全氮,采用硫酸-高氯酸消煮-钼锑抗比色法测定全磷。
1.3 数据处理
采用SPSS 25.0对数据进行K-S检验,验证数据正态性;采用单因素方差分析(one-way ANOVA)比较不同林分类型及不同组分生态化学计量差异;经方差齐性检验,使用最小显著性差异法(LSD)进行显著性检验(α=0.05);采用R 4.3.1对其进行相关性分析;绘图均在Origin 2021和R 4.3.1中进行。
2. 结果与分析
2.1 不同林分植物各器官、凋落物和土壤C、N、P质量分数分布特征
由图1可知:4个林分的植物叶、枝、根平均C质量分数分别为516.35、495.05、490.76 g·kg−1,平均N质量分数为19.14、6.75、10.46 g·kg−1,平均P质量分数为1.61、1.11、0.74 g·kg−1。各林分器官间叶的N、P质量分数显著高于枝和根(P<0.05)。
不同林分植物各器官-凋落物-土壤C、N、P质量分数存在显著差异(P<0.05)。油松叶、枝、根和凋落物C质量分数最高;辽东栎土壤C质量分数最高;刺槐叶、根和土壤N质量分数最高;辽东栎枝和凋落物N质量分数最高;侧柏各组分中的N质量分数均显著低于其他树种(P<0.05);油松叶和土壤P质量分数最高,侧柏叶、枝、根P质量分数最低。
2.2 不同林分植物各器官、凋落物和土壤C、N、P化学计量特征
由图2可知:4个林分的植物叶、枝、根平均C/N分别为31.44、107.79、92.40,平均C/P为360.02、547.72、751.41,平均N/P为12.25、6.11、14.58。根的C/N和C/P显著高于叶和枝(P<0.05)。
不同林分植物各器官-凋落物-土壤C/N、C/P、N/P存在显著差异(P<0.05)。侧柏叶、枝、根的C/N和C/P显著高于其他树种(P<0.05),枝、根、凋落物的C/P在不同林分中表现为辽东栎最低。油松凋落物的C/N、C/P、N/P显著高于其他树种(P<0.05)。辽东栎土壤的C/N、C/P、N/P显著高于其他树种(P<0.05),油松土壤的C/N、C/P、N/P显著低于其他树种(P<0.05)。
2.3 典型林分植物各器官、凋落物和土壤C、N、P与化学计量特征的相关性分析
如图3所示:典型林分植物叶、枝、根的C、N呈显著正相关(P<0.05)。叶C与凋落物C、土壤P呈极显著正相关(P<0.01),与凋落物P呈极显著负相关(P<0.01);叶N与凋落物N、P、土壤N呈显著正相关(P<0.05);枝C与凋落物C呈显著正相关(P<0.05),与凋落物N、P呈显著负相关(P<0.05);枝N与凋落物N、土壤C呈显著正相关(P<0.05);枝P与凋落物N、土壤C、N呈显著正相关(P<0.05);根C与凋落物C、土壤P呈极显著正相关(P<0.01),与凋落物P呈极显著负相关(P<0.01);根N与凋落物N、土壤N呈显著正相关(P<0.05);凋落物C与凋落物P、土壤C呈显著负相关(P<0.05),与土壤P呈极显著正相关(P<0.01);土壤N与土壤P呈极显著正相关(P<0.01)。
叶C/N与凋落物C/N呈显著正相关(P<0.05);叶N/P与凋落物C/N呈显著负相关(P<0.05);根C/P与凋落物C/N呈显著正相关(P<0.05),与土壤C/P、N/P呈显著负相关(P<0.05);凋落物C/N、C/P均与土壤C/N、C/P呈极显著负相关(P<0.01),与N/P呈极显著负相关(P<0.001);土壤C/N与土壤C/P、N/P呈极显著正相关(P<0.001);土壤C/P与土壤N/P呈极显著正相关(P<0.001)。
3. 讨论
植物C、N、P养分分配及环境因子共同决定了植物的生长发育和营养水平[13]。本研究中4种林分乔木叶片C、N、P平均质量分数分别为516.35、18.64、1.61 g·kg−1,叶片C质量分数较全球植物叶片平均值(461.60 g·kg−1)偏高,但是N、P质量分数低于全球平均水平(20.60、2.00 g·kg−1)[1]。说明该研究区的C储备丰富,N、P较为贫瘠。这与黄土高原土壤结构松散,水土流失严重,植物难以从土壤中吸收N、P元素有关[14],亦与中国土壤P质量分数普遍较低的规律一致[15]。本研究中,油松叶片、枝、根C质量分数高于其他植被,表明油松体内积累了更多的有机质,能更好地抵御不良环境的侵扰,这与马钦彦等[16]对针叶树种的研究结果一致。相关研究表明:植物C质量分数越高,植物对外界不利条件的抵抗能力越强[17]。油松作为常绿针叶树种,叶片角质层发达,含有大量木质素与单宁等含碳化合物,具有更强的叶片韧性,可以更好地承受外界物理损伤。刺槐各组分间N质量分数显著高于其他植被类型,刺槐作为豆科Leguminosae植物,通过根瘤固定空气中的N,具有较强的固氮能力[18],可以缓解黄土高原普遍缺N的现象。
植物叶C/N、C/P与植物的固氮能力、养分吸收和利用效率存在正反馈机制,与植物生长速率存在负反馈机制[19]。本研究中,刺槐叶C/N、C/P最低,表明刺槐在生长过程中生长速率较快。相关研究表明:植物叶N/P能够解释植物养分的受限制情况[20]。本研究中,油松、侧柏和辽东栎叶的平均N/P为8.34~13.71。胡耀升等[21]研究表明:当N/P<14时,植物的生长受N的限制;当14<N/P<16时,植物的生长受N、P共同限制。而本研究结果表明:黄土丘陵区油松、侧柏、辽东栎的生长主要受N限制,刺槐N/P为15.24,说明刺槐的生长同时受N和P的限制。凋落物是植物与土壤养分循环之间的纽带[22],其分解速率的快慢和养分释放的多少决定了植物的养分利用效率和土壤养分的供应状况[23]。其中,凋落物的C/N、C/P能反映其分解速率,C/N、C/P较低时凋落物更易分解。本研究中,油松凋落物C/N、C/P高于其他树种,不易分解,这是因为油松凋落物中较高的C和较低的C/N抑制了微生物的分解作用[24]。有研究发现:凋落物N/P也可以表征其分解速率的受限制情况[25]。本研究中,黄土丘陵区4种林分凋落物N/P均低于25,表明研究区凋落物分解主要受N限制。研究区土壤C/N、C/P平均值远小于全国平均值[26],这与郭鑫等[27]的研究结果一致,表明研究区土壤有机质分解矿化作用较快,不利于土壤有机质积累,且土壤P的有效性较高,土壤微生物受P的限制作用较小。作为衡量土壤质量的重要参数,土壤N/P可以表征土壤养分限制情况,本研究中黄土丘陵区土壤N/P远低于中国陆地平均水平[26],表明研究区内植物生长主要受限于土壤N。
在长期的进化过程中,植物通过调节养分配置,形成相应的元素分配规律,从而产生对应的生长特性,以适应外界环境的变化。本研究中不同器官C、N、P质量分数及其计量比存在密切联系,叶与根的C、N质量呈显著正相关,说明叶与根养分分配具有协同性,这与王淳等[28]的研究结果一致。不同器官间的C/N、C/P、N/P均呈显著正相关,说明不同器官之间相互促进,协同增长;植物资源利用在不同植物器官间是一致的,同时也受相同元素限制。因此,分析植物、凋落物和土壤间C、N、P及化学计量特征的相关关系,有助于解释生态系统养分循环的内部调控规律[29]。
本研究中典型林分植物各器官C、N与凋落物C、N呈显著正相关,叶C/N与凋落物C/N呈显著正相关,可见,植物与凋落物在各元素间存在较强的相关性,这是因为叶片是凋落物的直接来源,两者之间存在养分转移。叶和根的N与土壤N呈显著正相关关系,表明叶和根与土壤供给的氮之间相互促进。凋落物C与土壤C呈显著负相关,凋落物C/N、C/P与土壤C/N、C/P、N/P间呈显著负相关,说明凋落物是植物地上部分与土壤之间的介质,凋落物分解速率的快慢,影响着凋落物与土壤之间的养分循环关系[30]。凋落物分解速率慢,其自身养分含量高,返还到土壤中的养分将减少,因此,凋落物与土壤元素之间存在负相关关系。
4. 结论
山西西南部黄土丘陵区典型林分乔木叶、枝、根、凋落物和土壤的生态化学计量特征具有显著差异,油松林具有较好的固碳能力,刺槐林具有较好的固氮效果。刺槐生长受N、P限制;油松、侧柏、辽东栎生长受N限制;研究区土壤氮缺乏且凋落物分解受N限制。典型林分植物叶、枝、根之间化学计量特征显著正相关,说明植物各器官养分分配具有协同性,凋落物与土壤之间化学计量特征显著负相关,表明凋落物和土壤之间的养分动态变化具有协变性。因此,从养分限制角度考虑,建议在晋西北黄土丘陵区人工林管护过程中合理营造刺槐混交林,增强固氮能力,并缓解N元素的养分限制性。
-
表 1 毛竹LTR反转录转座子超家族分类
Table 1. Classification of LTR retrotransposons superfamily of moso bamboo genome
超家族 谱系 家族a 结构 数量/个 全长/bp 百分比b/% Ty1-copia Tork 236 GAG-PR-INT-RT-RH 145 708 124 219 995 6.51 Retrofit 342 GAG-PR-INT-RT-RH 41 965 43 615 815 2.29 Sire 136 GAG-PR-INT-RT-RH-ENV 223 386 210 097 734 11.01 Oryco 105 GAG-PR-INT-RT-RH 22 078 22 854 591 1.20 合计 819 433 137 400 788 135 21.01 Ty3-gypsy Del 207 GAG-PR-RT-RH-INT-CHR 295 222 334 005 916 17.51 Reina 249 GAG-PR-RT-RH-INT-CHR 27 803 39 235 939 2.06 Crm 47 GAG-PR-RT-RH-INT 40 781 44 298 955 2.32 Tat 238 GAG-PR-RT-RH-INT 217 288 230 055 053 12.06 Galadriel 1 GAG-PR-RT-RH-INT-CHR 23 51 248 0.00 Athila 1 GAG-PR-RT-RH-INT-ENV 311 257 970 0.01 合计 743 581 428 647 905 081 33.96 总计 1 562 1 014 565 1 048 693 216 54.97 说明:a表示每个谱系的数量;b表示在毛竹基因组中LTR反转录转座子所占的比例 表 2 毛竹LTR反转录转座子谱系特征
Table 2. Structure of LTR retrotransposon family of moso bamboo
谱系 家族a 百分比c/% 全长LTRd Solo LTRe 全长LTR/Solo LTR 全长 LTR+Solo LTR 百分比f/% Tork 236 28.82 1 169 1 492 1.28 2 661 28.76 Retrofit 342 41.76 302 1 158 3.83 1 460 15.78 Sire 136 16.61 464 3 139 6.77 3 603 38.95 Oryco 105 12.82 521 1 006 1.93 1 527 16.51 Ty1-copia 819 100.00 2 456 6 795 2.77 9 251 100.00 Del 207 27.86 2 102 2 992 1.42 5 094 41.97 Reina 249 33.51 495 1 245 2.52 1 740 14.34 Crm 47 6.33 510 1 352 2.65 1 862 15.34 Tat 238 32.03 2 168 1 251 0.58 3 419 28.17 Galadriel 1 0.13 0 7 0 7 0.06 Athila 1 0.13 0 14 0 14 0.12 Ty3-gypsy 743 100.00 5 275 6 861 1.30 12 136 100.00 总计 1 562 100.00 7 731 13 656 1.77 21 387 100.00 说明:a表示每个谱系的数量;c表示每个谱系在超家族中所占的比例;d表示结构完整的LTR反转录转座子(full-length LTR),包含 两端LTR序列和完整的编码结构域[44];e表示仅含有两端LTR序列,编码结构域有缺失的LTR反转录转座子(solo LTR)[44];f表 示每个谱系中full-length LTR和solo LTR在超家族中所占的比例 表 3 LTR反转录转座子PBS使用统计
Table 3. Usage status of PBS in LTR retrotransposons
tRNA 数量/个 百分比/% Ty1-copia
使用比例/%Ty3-gypsy
使用比例/%MetCAT24 1 383 4.05 1.70 0.83 LysTTT 486 1.42 0.00 1.10 LysTTT10 285 0.83 0.31 0.03 LeuAAG21 131 0.38 0.00 0.15 LysTTT3 111 0.32 0.16 0.01 LeuTAG9 66 0.19 0.07 0.01 -
[1] 殷豪. 梨基因组 LTR 反转座子注释及进化分析研究[D]. 南京: 南京农业大学, 2014. YIN Hao. Genome-wide Annotation and Evolutionary Analysis of Long Terminal Repeat Retrotransposons in Pear (Pyrus bretschneideri Rehd.)[D]. Nanjing: Nanjing Agricultural University, 2014. [2] NIE Qiong, QIAO Guang, PENG Lei, et al. Transcriptional activation of long terminal repeat retrotransposon sequences in the genome of pitaya under abiotic stress [J]. Plant Physiol Biochem, 2019, 135: 460 − 468. [3] 蒋爽. 基于反转录转座子标记的梨属植物亲缘关系研究[D]. 杭州: 浙江大学, 2015. JIANG Shuang. Studies on Genetic Relationships of Pyrus Species and Cultivars based on Retrotransposons Markers[D]. Hangzhou: Zhejiang University, 2015. [4] 汪浩. 植物基因组 LTR 反转录转座子注释和比较研究[D]. 上海: 复旦大学, 2008. WANG Hao. Annotation and Comparative Study of LTR Retrotransposons in Plant Genomes[D]. Shanghai: Fudan University, 2008. [5] KOBAYASHI S, GOTO-YAMAMOTO N, HIROCHIKA H. Retrotransposon-induced mutations in grape skin color[J]. Science, 2004, 304(5673): 982. doi: 10.1126/science.1095011. [6] ZHOU Mingbing, LIANG Linlin, HANNINEN H. A transposition-active Phyllostachys edulis long terminal repeat (LTR) retrotransposon [J]. J Plant Res, 2018, 131(2): 203 − 210. [7] JIANG Shuag, TENG Yuanwen, ZONG Yu, et al. Review of LTR retrotransposons in plants [J]. Acta Bot Boreali-Occident Sin, 2013, 33(11): 2354 − 2360. [8] 张赞一. 毛竹 LTR 反转录转座子-PHRE6 的克隆与转座活性鉴定以及转座监测系统的构建[D]. 杭州: 浙江农林大学, 2018. ZHANG Zanyi. Phyllostachys edulis LTR Transposon-cloning and Transposition Activity Identification of PHRE6 and Construction of Transposition Monitoring System[D]. Hangzhou: Zhejiang A&F University, 2018. [9] 吴骏澜. 长末端重复序列反转录转座子分析流程构建及应用[D]. 合肥: 安徽农业大学, 2017. WU Julan. Construction and Application of Identification and Analysis Process of Full-length LTR-retrotransposons[D]. Hefei: Anhui Agricultural University, 2017. [10] ROY N S, CHOI J Y, LEE S I, et al. Marker utility of transposable elements for plant genetics, breeding, and ecology: a review [J]. Genes Genomics, 2015, 37(2): 141 − 151. [11] 周鹏. 梨 Ty1-copia 反转录转座子的分子特性研究[D]. 杨凌: 西北农林科技大学, 2013. ZHOU PENG. Molecular Character of Novel Ty1-copia Retrotransposons in Pear[D]. Yangling: Northwest A&F University, 2013. [12] 马赑. 桑树全基因组转座子的鉴定及特征分析[D]. 重庆: 西南大学, 2014. MA Bi. Genome-wide Identification and Characterization of Transposable Elements in Mulberry (Morus notabilis)[D]. Chongqing: Southwest University, 2014. [13] 侯菲. 蔷薇目 7 个物种间 LTR 反转录转座子水平转移的鉴定以及转座活性分析[D]. 重庆: 西南大学, 2018. HOU Fei. Horizontal Transfers and Activity Analysis of LTR Retrotransposons in Seven Rosales Species[D]. Chongqing: Southwest University, 2018. [14] FINATTO T, de OLIVEIRA A C, CHAPARRO C, et al. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice [J]. Rice, 2015, 8: 13. doi: 10.1186/s12284-015-0045-6. [15] GALINDO-GONZALEZ L, MHIRI C, DEYHOLOS M K, et al. LTR-retrotransposons in plants: engines of evolution [J]. Gene, 2017, 626: 14 − 25. [16] WICKER T, SABOT F, HUA-VAN A, et al. A unified classification system for eukaryotic transposable elements [J]. Nat Rev Genet, 2007, 8(12): 973 − 982. [17] SHINGOTE P R, MITHRA S V A, SHARMA P, et al. LTR retrotransposons and highly informative ISSRs in combination are potential markers for genetic fidelity testing of tissue culture-raised plants in sugarcane [J]. Mol Breed, 2019, 39(2): 25. [18] SAZE H, KAKUTANI T. Differentiation of epigenetic modifications between transposons and genes [J]. Curr Opin Plant Biol, 2011, 14(1): 81 − 87. [19] DU Jianchang, TIAN Zhixi, BOWEN N J, et al. Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR swapping in soybean [J]. Plant Cell, 2010, 22(1): 48 − 61. [20] LLORENS C, MUNOZ-POMER A, BERNAD L, et al. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees [J]. Biol Dir, 2009, 4(12): 41 − 72. [21] 虞洪杰. 植物 LTR 反转录转座子的预测和注释及邻聚法构建系统进化树研究[D]. 杭州: 浙江大学, 2011. YU Hongjie. Prediction and Annotation of LTR Retrotranspons in Plant and a New Method to Construct Phylogeneic Trees[D]. Hangzhou: Zhejiang University, 2011. [22] XU Ling, ZHANG Yue, SU Yuan, et al. Structure and evolution of full-length LTR retrotransposons in rice genome [J]. Plant Syst Evol, 2010, 287(1/2): 19 − 28. [23] WANG Qinghua, DOONER H K. Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses [J]. Plant J, 2012, 72(2): 212 − 221. [24] LAVERGNE S, MUENKE N J, MOLOFSKY J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants [J]. Ann Bot, 2010, 105(1): 109 − 116. [25] ELLINGHAUS D, KURTZ S, WILLHOEFT U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons[J]. BMC Bioinf, 2008, 9(1). doi: 10.1186/1471-2105-9-18. [26] WANG Hao, LIU Jinsong. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice [J]. BMC Genomics, 2008, 9(1). doi: 10.1186/1471-2164-9-382. [27] LERAT E. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs [J]. Heredity, 2010, 104(6): 520 − 533. [28] SU Shuai, CUI Ning, SUN Aijun, et al. Sequence analysis of the whole genome of a recombinant Marek’s disease virus strain, GX0101, with a reticuloendotheliosis virus LTR insert [J]. Arch Virol, 2013, 158(9): 2007 − 2014. [29] LIAN Shuaibin, CHEN Xinwu, WANG Peng, et al. A complete and accurate Ab initio repeat finding algorithm [J]. Interdisciplinary Sci Comput Life Sci, 2016, 8(1): 75 − 83. [30] OU Shujun, JIANG Ning. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons[J]. Mobile DNA, 2019, 10(6403). doi: 10.11011722736. [31] BEDELL J A, KORF I, GISH W, et al. MaskerAid: a performance enhancement to RepeatMaskerf [J]. Broinformatics, 2000, 16(11): 1040 − 1041. [32] 周敏. 竹子 LINEs, Ty3-gypsy 类转座子的克隆、鉴定及特性分析[D]. 杭州: 浙江农林大学, 2014. ZHOU Min. Cloning, Identification and Analysis Characteristics of LINEs and Ty3-gypsy Retrotransposons from Bamboo[D]. Hangzhou: Zhejiang A&F University, 2014. [33] PENG Zhenhua, LU Yuying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nat Genet, 2013, 45(4): 456 − 461. [34] ZHAO Hansheng, GAO Zhimin, WANG Le, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. GigaScience, 2018, 7(10): giy115. doi: 10.1093/gigascience/giy115. [35] MONAT C, TANDO N, TRANCHANT-DUBREUIL C, et al. LTRclassifier: a website for fast structural LTR retrotransposons classification in plants[J]. Mobile Genet Elem, 2016, 6(6). doi: 10.1080/2159256X.2016.1241050. [36] BERNARD H R, WUTICH A, RYAN G W. Analyzing Qualitative Data: Systematic Approaches[M]. New York: SAGE Publications, 2016. [37] MA Jianxin, BENNETZEN J L. Rapid recent growth and divergence of rice nuclear genomes [J]. Proc Nat Acad Sci, 2004, 101(34): 12404 − 12410. [38] EDGAR R C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity [J]. BMC Bioinf, 2004, 5(1): 113. doi: 10.1186/1471-2105-5-113. [39] KIMURA M, OHTA T. On the stochastic model for estimation of mutational distance between homologous proteins [J]. J Mol Evol, 1972, 2(1): 87 − 90. [40] PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and the diversification of grasses [J]. Nature, 2009, 457(7229): 551 − 556. [41] WANG Hao, XU Zhao, YU Hongjie. LTR retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in Asian cultivated rice [J]. BMC Genomics, 2008, 9(1): 1 − 13. [42] HAVECKER E R, GAO Xiang, VOYTAS D F. The Sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to dynein light chain 8 [J]. Plant Physiol, 2005, 139(2): 857 − 868. [43] CHADHA S, SHARMA M. Genetic differentiation and phylogenetic potential of Ty3/Gypsy LTR retrotransposon markers in soil and plant pathogenic fungi [J]. J Basic Microbiol, 2020, 60(6): 508 − 516. [44] BENNETZEN J L. Transposable element contributions to plant gene and genome evolution [J]. Plant Mol Biol, 2000, 42(1): 251 − 269. [45] PICAULT N, CHAPARRO C, PIEGU B, et al. Identification of an active LTR retrotransposon in rice [J]. Plant J, 2009, 58(5): 754 − 765. [46] HU Bingjie, ZHOU Mingbing, ZHU Yihang. Genome-wide characterization and evolution analysis of long terminal repeat retroelements in moso bamboo (Phyllostachys edulis)[J]. Tree Genet Genomes, 2017, 13(2): 43. doi: 10.1007/s11295-017-1114-3. [47] PENG Yu, ZHANG Yingying, GUI Yijie, et al. Elimination of a retrotransposon for quenching genome instability in modern rice [J]. Mol Plant, 2019, 12(10): 1395 − 1407. [48] WAGNER A. Distribution of transcription factor binding sites in the yeast genome suggests abundance of coordinately regulated genes [J]. Genomics, 1998, 50(2): 293 − 295. [49] LOCKTON S, GAUT B S. The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana [J]. J Mol Evol, 2009, 68(1): 80 − 89. [50] FESCHOTTE C, JIANG N, WESSLER S R. Plant transposable elements: where genetics meets genomics [J]. Nat Rev Genet, 2002, 3(5): 329 − 341. [51] KASHKUSH K, FELDMAN M, LEVY A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat [J]. Nat Genet, 2003, 33(1): 102 − 106. [52] HE Ningjia, ZHANG Chi, QI Xiwu, et al. Draft genome sequence of the mulberry tree Morus notabilis [J]. Nat Commun, 2013, 4(1): 1 − 9. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200458