Identification and expression pattern of phosphorus transporter Ⅰ family genes of Phyllostachys edulis
-
摘要:
目的 鉴定毛竹Phyllostachys edulis磷转运蛋白Ⅰ (phosphate transporter 1, PHTⅠ)家族基因,分析其表达模式。 方法 利用生物信息学方法,鉴定毛竹PHTⅠ家族成员,分析基因启动子调控元件、编码蛋白的理化性质、基因结构、氨基酸保守基序、基因在染色体的位置、组织表达特异性、基因适应性进化及系统进化等。 结果 毛竹中共鉴定出20个PHTⅠ家族基因 (PePHTs),分布在10条染色体上,均定位于细胞膜。每个基因都含有1~2个内含子,PePHTs启动子序列中包含干旱、低温等非生物胁迫以及赤霉素等激素类响应元件。毛竹PHTⅠ大部分为碱性蛋白质,分子量为48.61~71.89 kDa,理论等电点为6.84~9.30,疏水性值均大于0,都属于疏水蛋白。基因适应性进化分析显示:大多数PePHTs的选择压力值小于0,说明多数基因受到负选择压力。转录组表达图谱表明:PePHTs在不同组织中的表达存在差异性,说明该基因家族在毛竹生长发育过程中发挥着不同的作用。系统进化树表明:PePHTs都聚类在第Ⅰ亚家族,并且优先和水稻Oryza sativa聚类在同一支上。 结论 PHTⅠ家族在植物吸收和转运磷的过程中扮演了重要作用。本研究结果为深入研究毛竹PHTⅠ家族基因的功能奠定了理论基础。图5表1参45 Abstract:Objective This study is aimed to investigate the family members of phosphorus transporter Ⅰ (PHTⅠ) protein of Moso bamboo (Phyllostachys edulis) and analyze their expression patterns. Method With the employment of the bioinformatics, the PHTⅠ family members of Moso bamboo were identified before an analysis was conducted of the regulatory elements of gene promoters, the physicochemical properties of coding proteins, gene structure, conserved motifs of amino acids, gene positions on chromosomes, tissue expression specificity, gene adaptive evolution and phylogeny. Result PHTⅠ family of Moso bamboo consisted of 20 members distributed on ten chromosomes in the cell membrane and each gene contained 1 to 2 introns while the PePHTs promoter sequence contained elements of abiotic stress such as drought and low temperature and hormone response elements such as Gibberellic acid. Most PHTⅠ from Ph.edulis were basic proteins with the range of molecular weight of PePHTs between 48.61 and 71.89 kDa and that of the theoretical isoelectric point between 6.84 and 9.30. The hydrophobicity value of all PePHTs was greater than zero, indicating that all the proteins in this family were hydrophobic. In terms of gene adaptive evolution, the ω value of most PePHTs genes were lower than zero, indicating that most genes were under negative selection pressure. PePHTs had different expressions in different tissues, which indicated that PePHTs played different roles in the growth and development of Moso bamboo. PePHTs were clustered in the first Ⅰ subfamily, preferentially in the same branch as rice (Oryza sativa). Conclusion In conclusion, PHTⅠ family plays an important role in the absorption and transport of phosphorus in plants and the results of this study have provided a favorable theoretical foundation for a further analysis of the functions of the PHTⅠ family genes in Moso bamboo. [Ch, 5 fig. 1 tab. 45 ref. ] -
表 1 毛竹PHTⅠ家族基因编码蛋白序列的理化性质
Table 1. Physicochemical properties of proteins encoded by PHTⅠ gene family in Phyllostachy edulis
基因名称 基因登录号 氨基酸数/个 理论等电点 分子量/kDa 疏水性值 脂肪族氨基酸指数 亚细胞定位 PePHT1 PH02Gene03602 696 7.63 76.37 0.269 92.56 细胞膜 PePHT2 PH02Gene11006 531 9.10 57.69 0.538 98.91 细胞膜 PePHT3 PH02Gene14509 541 9.15 59.64 0.322 95.10 细胞膜 PePHT4 PH02Gene21291 532 8.45 58.05 0.371 89.40 细胞膜 PePHT5 PH02Gene24702 536 8.71 59.02 0.321 90.80 细胞膜 PePHT6 PH02Gene37931 547 8.31 58.97 0.412 92.32 细胞膜 PePHT7 PH02Gene39948 558 8.85 60.96 0.313 93.58 细胞膜 PePHT8 PH02Gene44007 536 8.03 58.49 0.408 91.27 细胞膜 PePHT9 PH02Gene44009 574 8.60 62.35 0.449 94.79 细胞膜 PePHT10 PH02Gene48053 507 8.01 55.77 0.259 87.59 细胞膜 PePHT11 PH02Gene48969 598 9.21 59.84 0.204 83.79 细胞膜 PePHT12 PH02Gene49859 567 8.99 61.45 0.376 92.31 细胞膜 PePHT13 PH02Gene50239 554 8.95 60.55 0.329 93.92 细胞膜 PePHT14 PH02Gene21248 518 8.02 57.42 0.494 105.04 细胞膜 PePHT15 PH02Gene21249 655 6.84 71.89 0.226 90.87 细胞膜 PePHT16 PH02Gene21250 505 9.30 55.46 0.473 105.07 细胞膜 PePHT17 PH02Gene21252 432 9.24 48.61 0.348 101.83 细胞膜 PePHT18 PH02Gene47590 520 8.67 58.31 0.324 90.25 细胞膜 PePHT19 PH02Gene47591 563 8.92 62.63 0.314 94.81 细胞膜 PePHT20 PH02Gene49564 527 8.04 58.50 0.391 97.53 细胞膜 -
[1] ABEL S, TICCONI C A, DELATORRE C A. Phosphate sensing in higher plants [J]. Physiol Plant, 2002, 115(1): 1 − 8. doi: 10.1034/j.1399-3054.2002.1150101.x [2] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource [J]. New Phytol, 2003, 157(3): 423 − 447. doi: 10.1046/j.1469-8137.2003.00695.x [3] SCHACHTMAN D P, REID R J, AYLING S M. Phosphorus uptake by plants: from soil to cell [J]. Plant Physiol, 1998, 116(2): 447 − 453. doi: 10.1104/pp.116.2.447 [4] POIRIER Y, BUCHER M. Phosphate transport and homeostasis in Arabidopsis [J/OL]. Am Soc Plant Biol, 2002: e0024 [2021-06-05]. doi: 10.1199/tab.0024. [5] LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops [J]. Annu Rev Plant Biol, 2014, 65: 95 − 123. doi: 10.1146/annurev-arplant-050213-035949 [6] PASZKOWSKI U, KROKEN S, ROUX C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis [J]. Proc Natl Acad Sci, 2002, 99(20): 13324 − 13329. doi: 10.1073/pnas.202474599 [7] NAGY R, VASCONCELOS M J V, ZHAO S, et al. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L. ) [J]. Plant Biol, 2006, 8(2): 186 − 197. [8] RAE A L, CYBINSKI D H, JARMEY J M, et al. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family [J]. Plant Mol Biol, 2003, 53(1/2): 27 − 36. doi: 10.1023/B:PLAN.0000009259.75314.15 [9] NAGY R, KARANDASHOV V, CHAGUE V, et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species [J]. Plant J, 2005, 42(2): 236 − 250. doi: 10.1111/j.1365-313X.2005.02364.x [10] PAO S S, PAULSEN I T, SAIER M H. Major facilitator superfamily [J]. Microbiol Mol Biol Rev, 1998, 62(1): 1 − 34. doi: 10.1128/MMBR.62.1.1-34.1998 [11] WANG Duoli, LÜ Sulian, JIANG Ping, et al. Roles, regulation, and agricultural application of plant phosphate transporters [J/OL]. Front Plant Sci, 2017, 8: 817[2021-06-05]. doi: 10.3389/fpls.201700817. [12] AYADI A, DAVID P, ARRIGHI J F, et al. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling [J]. Plant Physiol, 2015, 167(4): 1511 − 1526. doi: 10.1104/pp.114.252338 [13] SUN Shubin, GU Mian, CAO Yue, et al. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice [J]. Plant Physiol, 2012, 159(4): 1571 − 1581. doi: 10.1104/pp.112.196345 [14] LI Yiting, ZHANG Jun, ZHANG Xiao, et al. Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds [J]. Plant Sci, 2015, 230: 23 − 32. doi: 10.1016/j.plantsci.2014.10.001 [15] INOUE Y, KOBAE Y, OMOTO E, et al. The soybean mycorrhiza-inducible phosphate transporter gene, GmPT7, also shows localized expression at the tips of vein endings of senescent leaves [J]. Plant Cell Physiol, 2014, 55(12): 2102 − 2111. doi: 10.1093/pcp/pcu138 [16] GORDON-WEEKS R, TONG Yiping, DAVIES T G E, et al. Restricted spatial expression of a high-affinity phosphate transporter in potato roots [J]. J Cell Sci, 2003, 116(15): 3135 − 3144. doi: 10.1242/jcs.00615 [17] SONG Xinzhang, PENG Changhui, CIAIS P, et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest [J/OL]. Sci Adv, 2020, 6(12): eaaw5790[2021-06-20]. doi: 10.1126/sciadv.aaw5790. [18] 郑德华. 不同土壤类型对毛竹林生长的影响研究[J]. 世界竹藤通讯, 2014, 12(5): 32 − 34. doi: 10.3969/j.issn.1672-0431.2014.05.006 ZHENG Dehua. Influence of soil type on the growth of Phyllostachys heterocycla cv. pubescens forest [J]. World Bamboo Rattan, 2014, 12(5): 32 − 34. doi: 10.3969/j.issn.1672-0431.2014.05.006 [19] 严圣钦. 低产毛竹林的成因和改造技术[J]. 世界竹藤通讯, 2009, 7(3): 34 − 36. doi: 10.3969/j.issn.1672-0431.2009.03.010 YAN Shengqin. Causes for low-yield moso forest and the improvement technology [J]. World Bamboo Rattan, 2009, 7(3): 34 − 36. doi: 10.3969/j.issn.1672-0431.2009.03.010 [20] DU Enzai, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nat Geosci, 2020, 13(3): 221 − 226. doi: 10.1038/s41561-019-0530-4 [21] 赵光强, 付循成, 曹慧. 高等植物的磷营养研究[J]. 安徽农业科学, 2007, 35(31): 9851 − 9854. doi: 10.3969/j.issn.0517-6611.2007.31.025 ZHAO Guangqiang, FU Xuncheng, CAO Hui. Research on the phosphorus nutrition in higher plant [J]. J Anhui Agric Sci, 2007, 35(31): 9851 − 9854. doi: 10.3969/j.issn.0517-6611.2007.31.025 [22] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202. doi: 10.1016/j.molp.2020.06.009 [23] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33(7): 1870 − 1874. doi: 10.1093/molbev/msw054 [24] HE Zilong, ZHANG Huangkai, GAO Shenghan, et al. Evolview V2: an online visualization and management tool for customized and annotated phylogenetic trees [J]. Nucleic Acids Res, 2016, 44(W1): W236 − W241. doi: 10.1093/nar/gkw370 [25] IVANOVA Z, SABLOK G, DASKALOVA E, et al. Chloroplast genome analysis of resurrection tertiary relict haberlea rhodopensis highlights genes important for desiccation stress response [J/OL]. Front Plant Sci, 2017, 8: 204[2021-06-21]. doi: 10.3389/fpls.2017.00204. [26] ZHAO Hansheng, GAO Zimin, WANG Le, et al. Chromosome-level reference genome and alternative splicing atlas of Moso bamboo (Phyllostachys edulis) [J/OL]. GigaScience, 2018, 7(10): giy115[2021-06-23]. doi: 10.1093/gigascience/giy115. [27] BUN-YA M, NISHIMURA M, HARASHIMA S, et al. The PHO84 gene of saccharomyces cerevisiae encodes an inorganic phosphate transporter [J]. Mol Cell Biol, 1991, 11(6): 3229 − 3238. [28] AZIZ T, FINNEGAN P M, LAMBERS H, et al. Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes [J]. Plant Cell Environ, 2014, 37(4): 943 − 960. doi: 10.1111/pce.12210 [29] 林翩翩, 白有煌, 周明兵. 毛竹细胞色素P450的基因组学分析[J]. 植物生理学报, 2014, 50(9): 1387 − 1400. LIN Pianpian, BAI Youhuang, ZHOU Mingbing. Genomics analysis of cytochrome P450 monooxygenase genes in Phyllostachys heterocycla [J]. Plant Physiol J, 2014, 50(9): 1387 − 1400. [30] 王捷, 魏爱丽, 石瑛, 等. 念珠藻属植物hetR基因的适应性进化分析[J]. 植物科学学报, 2020, 38(1): 23 − 31. doi: 10.11913/PSJ.2095-0837.2020.10023 WANG Jie, WEI Aili, SHI Ying, et al. Adaptive evolutionary analysis of hetR gene in Nostoc [J]. Plant Sci J, 2020, 38(1): 23 − 31. doi: 10.11913/PSJ.2095-0837.2020.10023 [31] YE Y, YUAN J, CHANG X J, et al. The phosphate transporter gene OsPht1;4 is involved in phosphate homeostasis in rice [J/OL]. PLoS One, 2015, 10(5): e0126186. doi: 10.1371/journal.pone.0126186. [32] MUDGE S R, RAE A L, DIATLOFF E, et al. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis [J]. Plant J, 2002, 31(3): 341 − 353. doi: 10.1046/j.1365-313X.2002.01356.x [33] VERSAW W K, HARRISON M J. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses [J]. Plant Cell, 2002, 14(8): 1751 − 1766. doi: 10.1105/tpc.002220 [34] KARTHIKEYAN A S, VARADARAJAN D K, JAIN A, et al. Phosphate starvation responses are mediated by sugar signaling in Arabidopsis [J]. Planta, 2007, 225(4): 907 − 918. doi: 10.1007/s00425-006-0408-8 [35] GOFF S A, RICKE D, LAN T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science, 2002, 296(5565): 92 − 100. doi: 10.1126/science.1068275 [36] CHEN Aiqun, HU Jiang, SUN Shubin, et al. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species [J]. New Phytol, 2007, 173(4): 817 − 831. doi: 10.1111/j.1469-8137.2006.01962.x [37] FERRO M, SALVI D, RIVIÈRE-ROLLAND H, et al. Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters [J]. Proc Natl Acad Sci, 2002, 99(17): 11487 − 11492. doi: 10.1073/pnas.172390399 [38] GUO Chengjin, ZHAO Xiaolei, LIU Xiaoman, et al. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions [J]. Planta, 2013, 237(4): 1163 − 1178. doi: 10.1007/s00425-012-1836-2 [39] RAUSCH C, BUCHER M. Molecular mechanisms of phosphate transport in plants [J]. Planta, 2002, 216(1): 23 − 37. doi: 10.1007/s00425-002-0921-3 [40] SAIA S, RAPPA V, RUISI P, et al. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat [J/OL]. Front Plant Sci, 2015, 6: 815[2021-04-15]. doi: 10.3389/fpls.2015.00815. [41] WOHLRAB H. Identification of the N-ethylmaleimide reactive protein of the mitochondrial phosphate transporter [J]. Biochemistry, 1979, 18(10): 2098 − 2102. doi: 10.1021/bi00577a040 [42] GUO Biwei, IRIGOYEN S, FOWLER T B, et al. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues [J]. Plant Signaling Behav, 2008, 3(10): 784 − 790. doi: 10.4161/psb.3.10.6666 [43] WOHLRAB H, BRIGGS C. Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141) [J]. Biochemistry, 1994, 33(32): 9371 − 9375. doi: 10.1021/bi00198a001 [44] MISSON J, RAGHOTHAMA K G, JAIN A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation [J]. Proc Natl Acad Sci, 2005, 102(33): 11934 − 11939. doi: 10.1073/pnas.0505266102 [45] AI Penghui, SUN Suibin, ZHAO Jianning, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation [J]. Plant J, 2009, 57(5): 789 − 809. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210471

计量
- 文章访问数: 85
- 被引次数: 0