-
花芽分化是有花植物开花过程中最为重要的阶段,直接影响植物开花的质量和数量[1]。花芽分化是一个高度复杂的生理生化和形态发生过程,受自身调控和外界环境的共同影响[2-3]。目前,在许多物种中已经证实开花促进因子AP1 (APETALA1)、成花素FT (FLOWERING LOCUS T)以及LFY (LEAFY)等[4-5]参与调控花芽分化。SEP (SEPALLATA)是MADS-box转录因子家族中的一员,在花芽萌发时发挥着重要作用,能够调控B和C类功能基因的表达[6]。SEP蛋白可参与花器官的形成与发育,控制萼片、花瓣以及雄蕊的形成[7-8]。AP1可直接或通过LFY间接促进SEP的表达来控制早期的花发育过程[9]。另外,拟南芥Arabidopsis thaliana中的SEP3直接或间接地作用于SVP (SHORT VEGETATIVE PHASE)、SOC1(SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1)和FT等开花因子的下游基因[10],SEP3过表达能够控制其提前开花[11],且LiMADS3 (百合Lilium brownii var. viridulum的SEP3同源基因)转基因拟南芥植株也表现出早期开花表型[12]。PpCMB1隶属SEP类基因的SEP1亚组,将其转入拟南芥与正常生长的相比,PpCMB1过表达具有明显促进抽薹早花的表型[13]。但目前关于SEP类基因CMB1调控花分生组织、花器官和雄蕊等形成的研究较少。
紫薇Lagerstroemia indica是少数夏季开花的木本植物,花型奇特,花期可达100 d,极具观赏价值[14]。紫薇是顶生圆锥花序,其生长锥发育的过程中,首先由花序顶部的花原基先发育,继而两侧不断形成新的小花原基,最终形成完整的圆锥花序。关于紫薇花芽分化进程的研究较少,因此本研究拟通过对紫薇LiCMB1基因克隆,分析LiCMB1在花芽分化过程中不同时期以及不同组织中的表达模式,初步探究LiCMB1对紫薇花芽分化的调控作用,为紫薇的花期调控以及新品种选育等提供理论基础。
Cloning and expression characteristics of LiCMB1 gene in Lagerstroemia indica
-
摘要:
目的 克隆紫薇Lagerstroemia indica LiCMB1基因并分析其在紫薇花芽分化的不同时期及不同组织和器官中的表达,探讨LiCMB1基因的表达特性。 方法 利用简单克隆技术从紫薇中克隆得到LiCMB1的基因序列,通过ExPasy等在线工具对其进行蛋白质理化性质分析,使用MEGA 6.0构建系统进化树,结合紫薇花芽分化的表型观察和石蜡切片,采用实时荧光定量PCR分析花芽分化的不同时期及不同组织和器官中LiCMB1基因的表达。 结果 LiCMB1基因属于MADS-box家族SEP类基因,除了具有典型的MADS_MEF2_like和K-box结构域外,靠近C端处还含有一个SEP motif保守基序;LiCMB1在紫薇花芽分化过程中呈现先上升后下降的表达趋势,在各组织和器官中均有表达,表达量从高到低依次为雌蕊、萼片、芽、长雄蕊、短雄蕊、花瓣、叶、茎、根,说明LiCMB1可能对紫薇的花芽分化起到重要作用,且参与调控花器官发育。 结论 LiCMB1基因属于MADS-box家族的SEP基因,在紫薇花芽分化的前期发挥重要作用,尤其是在花萼分化期表达量最高,组织特异性分析表明该基因很可能参与了调控花器官发育。图7参28 Abstract:Objective The LiCMB1 gene of Lagerstroemia indica was cloned, and its expressions in different stages of flower bud differentiation and different tissues and organs were analyzed, so as to explore the expression characteristics of LiCMB1 gene. Method The gene sequence of LiCMB1 was cloned from L. indica by simple cloning technology. Physical and chemical properties of the protein were analyzed by online tools including ExPasy, and phylogenetic tree was constructed by MEGA 6.0 software. Combined with the phenotypic observation and paraffin section of L.indica flower bud differentiation, the expressions of LiCMB1 gene in different stages of flower bud differentiation and different tissues and organs were analyzed by real-time quantitative PCR (RT-qPCR). Result LiCMB1 gene belongs to SEP gene of MADS-box family, except for typical MADS_ MEF2_ like and K-box structure domain, there is also a SEP motif conserved motif near the C-end. The results of RT-qPCR showed that the expression trend of LiCMB1 increased first and then decreased in the process of flower bud differentiation of L. indica. It is expressed in different tissues and organs, and the expression levels of LiCMB1 from high to low were in the order of pistil, sepal, bud, long stamen, short stamen, petal, leaf, stem, root, indicating that LiCMB1 may play an important role in flower bud differentiation and participate in the regulation of flower organ development. Conclusion LiCMB1 gene belongs to the SEP gene of MADS-box family. It plays an important role in the early stage of flower bud differentiation of L. indica, especially in the calyx differentiation period. Tissue specificity analysis indicated that it was likely involved in the regulation of floral organ development. [Ch, 7 fig. 28 ref.] -
-
[1] 董晓晓, 别沛婷, 袁涛. 3个牡丹品种花芽分化过程形态及叶片碳水化合物质量分数变化[J]. 东北林业大学学报, 2020, 48(7): 34 − 39. DONG Xiaoxiao, BIE Peiting, YUAN Tao. Changes of morphology and carbohydrate content in leaves of three tree peony during flower bud differentiation [J]. Journal of Northeast Forestry University, 2020, 48(7): 34 − 39. [2] 郜爱玲, 李建安, 刘儒, 等. 高等植物花芽分化机理研究进展[J]. 经济林研究, 2010, 28(2): 131 − 136. GAO Ailing, LI Jian’an, LIU Ru, et al. Advance in research on flower bud differentiation mechanism in higher plants[J] Nonwood Forest Research, 2010, 28(2): 131 − 136. [3] 曲波, 张微, 陈旭辉, 等. 植物花芽分化研究进展[J]. 中国农学通报, 2010, 26(24): 109 − 114. QU Bo, ZHANG Wei, CHEN Xuhui, et al. Research progress of flower bud differentiation mechanism of plant [J]. Chinese Agricultural Science, 2010, 26(24): 109 − 114. [4] HUANG Tao, BÖHLENIUS H, ERIKSSON S, et al. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering [J]. Science, 2005, 309(5741): 1694 − 1696. [5] MANDEL M A, GUSTAFSON-BROWN C, SAVIDGE B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1 [J]. Nature, 1992, 360(6401): 273 − 277. [6] LIU Chang, XI Wanyan, SHEN Lisha, et al. Regulation of floral patterning by flowering time genes [J]. Developmental Cell, 2009, 16(5): 711 − 722. [7] IMMINK R G H, TONACO I A N, de FOLTER S, et al. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation[J/OL]. Genome Biology, 2009, 10(2): R24[2022-04-21]. doi: 10.1186/gb-2009-10-2-r24. [8] SEYMOUR G B, RYDER C D, CEVIK V, et al. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch. ) fruit, a non-climacteric tissue [J]. Journal of Experimental Botany, 2011, 62(3): 1179 − 1188. [9] GREGIS V, SESSA A, COLOMBO L, et al. AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis [J]. The Plant Journal, 2008, 56(6): 891 − 902. [10] TEPER-BAMNOLKER P, SAMACH A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves [J]. The Plant Cell, 2005, 17(10): 2661 − 2675. [11] PELAZ S, GUSTAFSON-BROWN C, KOHALMI S E, et al. APETALA1 and SEPALLATA3 interact to promote flower development [J]. The Plant Journal, 2001, 26(4): 385 − 394. [12] TZENG T Y, HSIAO C C, CHI P J, et al. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis [J]. Plant Physiology, 2003, 133(3): 1091 − 1101. [13] 张新昊, 沈红艳, 文滨滨, 等. 桃MADS-box家族PpCMB1基因调控花发育分子机制[J]. 植物生理学报, 2021, 57(6): 1211 − 1217. ZHANG Xinhao, SHEN Hongyan, WEN Binbin, et al. Molecular mechanism of PpCMB1 gene in peach MADS-box family regulating flower development [J]. Plant Physiology Journal, 2021, 57(6): 1211 − 1217. [14] ZHANG Qixiang. Studies on cultivars of crape myrtle (Lagerstroemia indica) and their uses in urban greening [J]. Journal of Beijing Forestry University, 1991, 13(4): 57 − 66. [15] SUN Chunqing, CHEN Fadi, TENG Nianjun, et al. Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat. ) Kitamura and its wild species [J]. Euphytica, 2010, 171(2): 181 − 192. [16] ZHENG Tangchun, CHEN Zhilin, JU Yiqian, et al. Reference gene selection for qRT-PCR analysis of flower development in Lagerstroemia indica and L. speciosa [J/OL]. PLoS One, 2018, 13(3): e0195004[2022-04-21]. doi: 10.1371/journal.pone.0195004. [17] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC t method [J]. Methods, 2001, 25(4): 402 − 408. [18] 陈晨, 喻方圆. 林木花芽分化研究进展[J]. 林业科学, 2020, 56(9): 119 − 129. CHEN Chen, YU Fangyuan. Research progress on flower bud differentiation of trees [J]. Scientia Silvae Sinicae, 2020, 56(9): 119 − 129. [19] PELAZ S, DITTA G S, BAUMANN E, et al. B and C floral organ identity functions require SEPALLATTA MADS-box genes [J]. Nature, 2000, 405(6783): 200 − 203. [20] HONMA T, GOTO K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature, 2001, 409(6819): 525 − 529. [21] ZAHN L M, KONG H, LEEBENS-MACK J H, et al. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history [J]. Genetics, 2005, 169(4): 2209 − 2223. [22] ZHANG Jianling, HU Zongli, WANG Yunshu, et al. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals [J]. Plant Science, 2018, 272: 75 − 87. [23] KAUFMANN K, MELZER R, THEISSEN G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants [J]. Gene, 2005, 347(2): 183 − 198. [24] WEIGEL D, MEYEROEITZ E M. The ABCs of floral homeotic genes [J]. Cell, 1994, 78(2): 203 − 209. [25] 黄晓婧, 张珺, 夏惠, 等. 葡萄MADS-box转录因子家族全基因组鉴定及表达分析[J]. 园艺学报, 2019, 46(10): 1882 − 1896. HUANG Xiaojing, ZHANG Jun, XIA Hui, et al. Genome-wide identification and expression analysis of the MADS-box gene family in Vitis vinifera [J]. Acta Horticulturae Sinica, 2019, 46(10): 1882 − 1896. [26] 隋娟娟, 李晓昕, 杨秋燕, 等. 重瓣百合LiSEP3基因克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2017, 41(1): 42 − 48. SUI Juanjuan, LI Xiaoxin, YANG Qiuyan, et al. Cloning and expression analysis of gene LiSEP3 in double lily [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(1): 42 − 48. [27] 姜纯, 周陶敏, 盖树鹏, 等. 牡丹PsMADS4基因的克隆、表达分析及载体构建[J]. 植物生理学报, 2021, 57(1): 94 − 100. JIANG Chun, ZHOU Taomin, GAI Shupeng, et al. Cloning, expression analysis and vector construction of tree peony PsMADS4 gene [J]. Plant Physiology Journal, 2021, 57(1): 94 − 100. [28] 程占超, 马艳军, 侯丹, 等. 毛竹PheMADS15基因的克隆及功能分析[J]. 浙江农林大学学报, 2017, 34(3): 421 − 426. CHENG Zhanchao, MA Yanjun, HOU Dan, et al. Isolation and functional analysis of the PheMADS15 gene in Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2017, 34(3): 421 − 426. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220333