本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
功能丧失突变透示ATS1对拟南芥种子发育的非必需作用
doi: 10.11833/j.issn.2095-0756.20220738
Loss-of-function mutations in ATS1 reveal its dispensable role in normal seed development of Arabidopsis
-
摘要:
目的 甘油脂是生物膜的重要组成成分,植物中的ATS1催化甘油脂原核合成途径的第1步酰化反应,但目前ATS1在植物正常生长发育中的功能并不完全清楚。本研究目的是运用反向遗传学手段剖析ATS1功能丧失对植物生长发育的影响。 方法 运用CRISPR/Cas9基因编辑技术,构建拟南芥Arabidopsis ATS1基因功能丧失型突变体,并比较分析突变体与野生型在整个生育期的表型差异。 结果 分子鉴定显示:多个突变体中ATS1基因的第1个外显子碱基数呈非3的倍数的缺失或插入,从而导致移码突变或翻译提前终止。这些突变体的叶片中多不饱和脂肪酸C16:3的含量急剧下降,而C18:3 含量则显著增加。相随的表型分析显示:ATS1基因功能丧失有时会使叶片略显黄色,但对种子发育未产生可见影响。 结论 在正常生长条件下,ATS1并非拟南芥种子发育所必需的。图3表2参25 Abstract:Objective Glycerolipids are the main constituents of biological membranes. ATS1 catalyzes the first acylation reaction in the prokaryotic pathway of glycerolipid synthesis. However, the function of ATS1 in normal plant growth and development is not completely understood. The present study was intended to dissect the effect of loss of function of ATS1 on plant growth and development by taking a reverse genetic approach. Method Loss-of-function mutants of the ATS1 gene were constructed by using CRISPR/Cas9 gene editing technology. Then, comparative analysis was conducted on phenotypic difference between the mutants and wild type Arabidopsis during the entire growth phase. Result Molecular characterization of multiple mutants revealed that the number of base pairs inserted or deleted in the first exon of the ATS1 gene is not a multiple of three, resulting in frameshift mutations or premature translation termination. Consistent with this, the content of polyunsaturated fatty acid 16:3 in the leaves of these mutants decreased sharply, concomitant with significant increases in the content of 18:3. Meanwhile, phenotypic analysis showed that loss of ATS1 gene function sometimes made the leaves turn slightly yellow, while having no visible effect on seed development. Conclusion The above results strongly indicate that ATS1 is dispensable for Arabidopsis seed development under normal growth conditions. [Ch, 3 fig. 2 tab. 25 ref.] -
Key words:
- Arabidopsis /
- ATS1 /
- gene editing /
- ats1 mutant
-
表 1 不同ats1突变体名称及其相应突变位点序列信息
Table 1. Designation of different ats1 mutants and the sequences of corresponding mutational sites
突变体 突变位点 ats1-1 92~314 bp:215 bp缺失;8 bp替换 ats1-2 91~92 bp:插入1 bp;293~294 bp:插入1 bp ats1-3 91~92 bp:7 bp插入;275~289 bp:11 bp缺失,
4 bp替换表 2 野生型拟南芥与ats1突变体叶片的脂肪酸组分
Table 2. Leaf fatty acid composition of ats1 mutants and wild-type Arabidopsis
脂肪酸 脂肪酸组分含量/% C16:0 C16:1 C16:3 C18:0 C18:1 C18:2 C18:3 WT 14.91±0.73 a 7.35±0.53 a 11.56±0.38 a 6.17±1.55 a 4.37±0.59 b 14.89±1.30 b 38.50±3.04 b ats1-1 11.91±0.65 b 5.55±0.69 b 0.70±0.15 b 3.89±0.87 a 8.65±0.75 a 18.61±0.54 a 49.14±2.24 a ats1-2 11.20±0.18 b 5.93±0.89 ab 0.65±0.15 b 4.67±0.32 a 8.89±1.06 a 18.67±0.98 a 48.31±1.68 a ats1-3 12.29±0.81 b 6.00±0.93 ab 0.57±0.18 b 6.02±1.62 a 9.08±1.02 a 18.28±0.88 a 46.04±1.45 a 说明:WT为野生型对照,n=3,不同小写字母表示不同株系间显著差异(P<0.05) -
[1] MURATA N, TASAKA Y. Glycerol-3-phosphate acyltransferase in plants [J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1997, 1348(1/2): 10 − 16. [2] CHEN Xue, SNYDER C L, TRUKSA M, et al. Sn-glycerol-3-phosphate acyltransferases in plants [J]. Plant Signaling &Behavior, 2011, 6(11): 1695 − 1699. [3] 韩妮莎, 丁硕, 郑月萍, 等. 植物甘油脂合成途径第一步酰化反应的研究进展[J]. 中国油料作物学报, 2022, 44(4): 699 − 711. doi: 10.19802/j.issn.1007-9084.2021139 HAN Nisha, DING Shuo, ZHENG Yueping, et al. Advance in studies on the initial step of the glycerolipid biosynthetic pathway in plants [J]. Chinese Journal of Oil Crop Sciences, 2022, 44(4): 699 − 711. doi: 10.19802/j.issn.1007-9084.2021139 [4] GAN Yi, SONG Yu, CHEN Yadong, et al. Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr [J/OL]. BMC Plant Biology, 2018, 18(1): 303[2022-11-10]. doi: 10.1186/s12870-018-1525-9. [5] ZHENG Zhifu, XIA Qun, DAUK M, et al. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility [J]. The Plant Cell, 2003, 15(8): 1872 − 1887. doi: 10.1105/tpc.012427 [6] KUNST L, BROWSE J, SOMERVILLE C. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity [J]. Proceedings of the National Academy of Sciences, 1988, 85(12): 4143 − 4147. doi: 10.1073/pnas.85.12.4143 [7] OHLROGGE J, BROWSE J. Lipid biosynthesis [J]. The Plant Cell, 1995, 7(7): 957 − 970. [8] NISHIDA I, TASAKA Y, SHIRAISHI H, et al. The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana [J]. Plant Molecular Biology, 1993, 21(2): 267 − 277. doi: 10.1007/BF00019943 [9] XU Changcheng, YU Bin, CORNISH A J, et al. Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase [J]. The Plant Journal, 2006, 47(2): 296 − 309. doi: 10.1111/j.1365-313X.2006.02790.x [10] KIM H U, HUANG A H. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis [J]. Plant Physiology, 2004, 134(3): 1206 − 1216. doi: 10.1104/pp.103.035832 [11] 陈娜, 郭尚敬, 颜坤, 等. 甜椒甘油-3-磷酸酰基转移酶基因的克隆与表达分析[J]. 园艺学报, 2005, 32(5): 58 − 62. doi: 10.16420/j.issn.0513-353x.2005.05.015 CHEN Na, GUO Shangjing, YAN Kun, et al. Cloning and expression analysis of glycerol-3-phosphate acyltransferase gene from sweet pepper [J]. Acta Horticulturae Sinica, 2005, 32(5): 58 − 62. doi: 10.16420/j.issn.0513-353x.2005.05.015 [12] FRITZ M, HEINZ E, WOLTER F P. Cloning and sequencing of a full-length cDNA coding for sn-glycerol-3-phosphate acyltransferase from Phaseolus vulgaris [J]. Plant Physiology, 1995, 107(3): 1039 − 1040. doi: 10.1104/pp.107.3.1039 [13] WEBER S, WOLTER F P, BUCK F, et al. Purification and cDNA sequencing of an oleate-selective acyl-ACP: sn-glycerol-3-phosphate acyltransferase from pea chloroplasts [J]. Plant Molecular Biology, 1991, 17(5): 1067 − 1076. doi: 10.1007/BF00037145 [14] NISHIDA I, SUGIURA M, ENJU A, et al. A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza(*), codes for an oleate-selective isozyme: molecular cloning and protein purification studies [J]. Plant Cell Physiology, 2000, 41(12): 1381 − 1391. doi: 10.1093/pcp/pcd072 [15] BHELLA R S, MACKENZIE S L. Nucleotide sequence of a cDNA from Carthamus tinctorius encoding a glycerol-3-phosphate acyl transferase [J]. Plant Physiology, 1994, 106(4): 1713 − 1714. doi: 10.1104/pp.106.4.1713 [16] PAYA-MILANS M, VENEGAS-CALERON M, SALAS J J, et al. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus [J]. Phytochemistry, 2015, 111: 27 − 36. doi: 10.1016/j.phytochem.2014.12.028 [17] KANG Huiling, JIA Chenxi, LIU Ni’an, et al. Plastid glycerol-3-phosphate acyltransferase enhanced plant growth and prokaryotic glycerolipid synthesis in Brassica napus [J/OL]. International Journal of Molecular Sciences, 2020, 21(15): 5325[2022-11-20]. doi: 10.3390/ijms21155325. [18] YAN Kun, CHEN Na, QU Yanyan, et al. Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco [J]. Journal of Integrative Plant Biology, 2008, 50(5): 613 − 621. doi: 10.1111/j.1744-7909.2008.00652.x [19] 李昊根. ATS1异位表达对拟南芥甘油脂合成及磷胁迫响应的影响[D]. 杭州: 浙江农林大学, 2019. LI Haogen. Effects of Ectopic Expression of ATS1 on Glycerolipid Biosynthesis and Response to Phosphorus Stress in Arabidopsis thaliana [D]. Hangzhou: Zhejiang A&F University, 2019. [20] BAHIELDIN A, SABIR J S M, RAMADAN A, et al. Control of glycerol biosynthesis under high salt stress in Arabidopsis [J]. Functional Plant Biology, 2013, 41(1): 87 − 95. [21] KUNST L, BROWSE J, SOMERVILLE C. Altered chloroplast structure and function in a mutant of Arabidopsis deficient in plastid glycerol-3-phosphate acyltransferase activity [J]. Plant Physiology, 1989, 90(3): 846 − 853. doi: 10.1104/pp.90.3.846 [22] WANG Zhiping, XING Huili, DONG Li, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation [J/OL]. Genome Biology, 2015, 16: 144[2022-11-10]. doi: 10.1186/s13059-015-0715-0. [23] 朱丽颖, 郑月萍, 徐雪珍, 等. 一种准确、简便测定CRISPR/Cas9基因编辑效率的方法[J]. 江苏农业学报, 2020, 36(2): 299 − 305. doi: 10.3969/j.issn.1000-4440.2020.02.007 ZHU Liying, ZHENG Yueping, XU Xuezhen, et al. A convenient and accurate method for determining the efficiency of CRISPR/Cas9-based gene editing [J]. Jiangsu Academy of Agricultural Sciences, 2020, 36(2): 299 − 305. doi: 10.3969/j.issn.1000-4440.2020.02.007 [24] 李丹丹, 林蓉, 李新国, 等. AtJAR1 基因在拟南芥耐盐性中的功能分析[J]. 浙江农林大学学报, 2022, 39(5): 998 − 1009. LI Dandan, LIN Rong, LI Xinguo, et al. Functional analysis of AtJAR1 gene in salt tolerance of Arabidopsis thaliana [J]. Journal of Zhejiang A&F University, 2022, 39(5): 998 − 1009. [25] 徐雪珍, 郑月萍, 张夏婷, 等. 拟南芥AtFAD6 基因突变体的构建[J]. 江苏农业学报, 2021, 37(5): 1125 − 1130. XU Xuezhen, ZHENG Yueping, ZHANG Xiating, et al. Construction of Arabidopsis AtFAD6 gene mutant [J]. Jiangsu Academy of Agricultural Sciences, 2021, 37(5): 1125 − 1130. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220738

计量
- 文章访问数: 41
- 被引次数: 0