留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑翅土白蚁共生真菌对水稻秸秆生物降解研究

沈毅 漆梦雯 羊桂英 周琪欢 余婷 李吴晗 莫建初

詹利云, 刘琏, 曾燕如, 等. 雄性榧树天然居群表型多样性及优株初选[J]. 浙江农林大学学报, 2020, 37(6): 1120-1127. DOI: 10.11833/j.issn.2095-0756.20190676
引用本文: 沈毅, 漆梦雯, 羊桂英, 等. 黑翅土白蚁共生真菌对水稻秸秆生物降解研究[J]. 浙江农林大学学报, 2023, 40(6): 1224-1231. DOI: 10.11833/j.issn.2095-0756.20230140
ZHAN Liyun, LIU Lian, ZENG Yanru, et al. Phenotypic diversity of male cones and the selection of superior plants among male populations in Torreya grandis[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1120-1127. DOI: 10.11833/j.issn.2095-0756.20190676
Citation: SHEN Yi, QI Mengwen, YANG Guiying, et al. Biodegradation of rice straw by symbiotic fungi of Odontotermes formosanus[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1224-1231. DOI: 10.11833/j.issn.2095-0756.20230140

黑翅土白蚁共生真菌对水稻秸秆生物降解研究

DOI: 10.11833/j.issn.2095-0756.20230140
基金项目: 国家自然科学基金面上资助项目(32071771)
详细信息
    作者简介: 沈毅 (ORCID: 0000-0002-9533-1632),从事白蚁肠道微生物研究。E-mail: 961058115@qq.com
    通信作者: 莫建初 (ORCID: 0000-0001-5066-0734 ),教授,博士,从事城市昆虫学与害虫综合治理研究。E-mail: mojianchu@zju.edu.cn
  • 中图分类号: S216.2

Biodegradation of rice straw by symbiotic fungi of Odontotermes formosanus

  • 摘要:   目的  挖掘黑翅土白蚁Odontotermes formosanus共生真菌在秸秆资源利用上的应用潜力,为实现秸秆生物降解产业化补充菌种资源并提供理论依据。  方法  以羧甲基纤维素钠(CMC-Na)平板为分离培养基,采用刚果红染色法筛选,从黑翅土白蚁肠道中分离筛选具有木质纤维素降解活性的真菌,并测定纤维素酶活性。在液态发酵条件下,评估不同真菌以及真菌组合对水稻Oryza sativa秸秆的降解效果,利用傅立叶红外光谱、X射线晶体衍射和扫描电镜分析降解前后水稻秸秆的理化性质。  结果  从黑翅土白蚁肠道中共分离到4种具有木质纤维素降解活性的真菌,经鉴定分别为安拉阿巴德篮状菌Talaromyces allahabadensis、刺孢篮状菌T. aculeatus、黑曲霉Aspergillus niger和灰孔多年卧孔菌Perenniporia tephropora。纤维素酶活结果显示:黑曲霉的内切葡聚糖酶和外切葡聚糖酶活性最高,安拉阿巴德篮状菌的β-葡萄糖苷酶活性最高。水稻秸秆降解试验表明:黑曲霉与灰孔多年卧孔菌双菌组合具有最强的秸秆降解能力,20 d内可降解秸秆中38.27%的干物质、62.59%的纤维素和51.75%的半纤维素。降解后水稻秸秆内部化学键和分子间作用力被破坏,结晶度由22.44%上升至32.53%,秸秆表面崩解碎裂,结构蓬松化。  结论  从黑翅土白蚁肠道分离得到的黑曲霉和灰孔多年卧孔菌在组合降解水稻秸秆时表现出极强的降解能力,在秸秆生物降解产业化上具有潜在的开发价值。图6表2参30
  • 榧树Torreya grandis是红豆杉科Taxaceae榧属Torreya中国特有的植物,呈片状分布于浙江、福建、江西、湖南、安徽等省的丘陵地带[1]。榧树雌雄异株,稀同株,种内变异十分丰富[2]。香榧T. grandis ‘Merrillii’是雌性榧树的一个优良栽培类型,其结实所需花粉来自雄性榧树天然居群。然而雄株因不结实而往往遭受随意砍伐,数量大幅度减少[3]。近年来随着香榧产业的发展,人们认识到充分优质的授粉对雌株种实产量及品质影响极大,日益重视在香榧丰产造林中配置授粉雄株的作用。因此,对榧树雄株开展调查与选优是提高香榧产量及质量的重要因素之一。表型性状多样性是植物多样性最直观的反映,是衡量生物多样性的重要指标,也是了解遗传变异的重要线索[4]。在板栗Castanea mollissima[5]、樱桃Cerasus pseudocerasus[6]、椰枣Phoenix dactylifera[7]、李Prunus divaricata[8]、玉米Zea mays[9]等物种中都开展了表型性状多样性研究。榧树雌雄异株,天然杂交,且生长地理环境存在差异,使得天然群体内榧树变异十分丰富[10]。近年来对榧树的研究主要集中在病害[11]、生物学特性[12]、栽培管理技术[13]、分子标记[14]等方面。由于香榧具有极高的经济价值,研究多集中在雌性香榧上,而雄性榧树的研究鲜见报道。董雷鸣等[15]探讨榧树雄株若干性状的变异发现:叶片与雄球花各指标均有较大的变异系数,且不同来源的花粉对香榧幼果坐果率有显著影响,表明榧树雄株具有很大的选育潜力。本研究以来自5个雄性榧树天然居群的121个单株为研究材料,对叶片、雄球花等10个表型性状指标进行多样性分析,并在此基础上初选雄性榧树优株,为今后雄性榧树资源保护、授粉树配置及新品种选育提供科学依据。

    浙江省与安徽省是榧树主要的天然分布区。榧树目前主要生产与利用的是其种子,野生雄株天然居群除采种外受到的人为干扰较少。本研究在基本呈野生状态的雄性榧树天然居群开展,分布点分别为浙江省淳安县半夏村(淳安)、杭州市临安区洪岭村(临安)、杭州市富阳区洞桥村(富阳)、浙江嵊州市榆树村(嵊州)及安徽省黄山市呈坎村(黄山)开展。在分布点的雄性榧树林中各选取10~30株生长旺盛,彼此间距不小于50 m,无病虫害,树龄50~200 a的实生雄性榧树作为研究对象,用于试验观测与采样,同时利用全球卫星定位系统(GPS)定位采样点(表1)。各单株采集新鲜叶片即时装入加硅胶的自封袋中,带回实验室置于−80 ℃冰箱保存。各单株采集20个带雄球花的1年生幼枝,枝条底部用湿纸巾包裹后置于采样袋,带回实验室进行水培。

    表 1  5个雄性榧树天然居群的地理位置及采样数
    Table 1  Geographic locations of five natural populations in T. grandis
    居群采样数量/株样品编号纬度(N)经度(E)海拔/m
    淳安17CA01~CA1729°55′20″119°12′06″320~430
    临安24LA01~LA2429°59′30″119°12′32″305~360
    富阳24FY01~FY2430°05′47″119°38′42″360~410
    嵊州24SZ01~SZ2429°42′28″120°33′22″280~420
    黄山32HS01~HS3229°57′52″118°14′18″350~500
    下载: 导出CSV 
    | 显示表格
    1.2.1   叶片性状测定

    各单株选取20个叶片,用游标卡尺测量(精确至0.01 mm)叶宽和叶长,并计算叶形指数(叶宽/叶长);用托盘天平(PB1502-L,瑞士)称取叶质量。

    1.2.2   雄球花表型性状测定

    各单株随机选取30个雄球花,用游标卡尺测量雄球花横径、纵径,并计算花形指数(球花横径/纵径),同时用托盘天平称取雄球花质量。

    1.2.3   雄球花水培及散粉时间观察

    各单株选取3个雄球花数量较多且长势良好的枝条插入水中,置于浙江农林大学校园,培养条件设置为温度20 ℃,湿度75%,光强400 μmol·m−2·s−1,二氧化碳摩尔分数520 μmol·mol−1,2 d更换1次水,每天定期观察并记录花枝散粉情况。当雄球花的小孢子叶松散,颜色变黄,花粉囊纵裂,部分花苞散出黄色花粉时记为始花期,直至完全散粉。大约3 d时间。

    1.2.4   花粉得率测定

    每个单株各选30个即将散粉(即各小孢子叶松散,花苞颜色变黄,花粉囊开始纵裂)的雄球花,置干燥玻璃培养皿中,放置在室内干燥桌面上,使雄球花自然散粉。待雄球花完全开放,抖落所有花粉,收集花粉称量,计算花粉得率。花粉得率=[花粉质量/(花粉质量+撒粉后球花质量)]×100%。

    1.2.5   花粉生活力测定

    在全程避光的条件下,用荧光染料反应法(fluorescein diaectate reaction,二乙酸荧光素染色)测定花粉生活力[16]。随机观测3个不同视野,统计有活力花粉(呈绿色)数量和花粉总数(绿色和黑色)。花粉生活力=(有活力花粉数量/花粉总数)×100%。

    运用Excel和SPSS 17.0对各指标进行数据统计和方差分析、t检验及相关性分析等。

    方差分析表明:叶片性状的叶长在居群间有显著差异(P<0.05),雄球花性状的花粉得率在居群间呈极显著性差异(P<0.01),其他指标均无显著差异(表2)。t检验分析结果显示:在居群内单株间10个表型性状均差异极显著(P<0.01),表明雄性榧树表型性状的变异可能主要来源于居群内。

    表 2  雄性榧树5个居群叶片与雄球花相关指标的方差分析
    Table 2  ANOVA in leaf- and male flower-associated parameters among five natural populations in T. grandis
    指标平方和自由度均方FP指标平方和自由度均方FP
    叶质量 0.000 4 0.000 0.434 0.784 球花横径 0.354 4 0.089 0.310 0.871
    叶宽 0.298 4 0.075 0.792 0.533 球花纵径 2.138 4 0.543 0.421 0.793
    叶长 51.915 4 12.979 2.498 0.046* 花形指数 0.010 4 0.003 0.240 0.915
    叶形指数 0.002 4 0.001 0.820 0.515 花粉得率 0.170 4 0.043 4.980 0.001**
    球花质量 0.001 4 0.000 0.686 0.603 花粉生活力 0.095 4 0.024 0.355 0.840
      说明:*表示差异显著(P<0.05),**表示差异极显著(P<0.01)
    下载: 导出CSV 
    | 显示表格

    多重比较分析发现:叶长在5个居群间差异显著(P<0.05),5个居群中淳安居群的叶片平均最长(18.99 mm),显著长于其他居群;嵊州与黄山居群的叶片最短,且2个居群间无显著差异;临安与富阳居群的叶片长度居中,2个居群间无显著差异(图1A)。花粉得率在5个居群间差异极显著(P<0.01),嵊州和富阳居群的花粉得率较高,显著高于其他居群,且2个居群间无显著差异;而淳安与临安居群花粉得率最低且无显著差异(图1B)。

    图 1  雄性榧树5个居群叶长(A)和花粉得率(B)的变化
    Figure 1  Varieties among five natural populations in the leaf length(A) and pollen yield(B) in T. grandis
    数值为平均值±标准差;图柱上方不同字母表示不同居群间差异显著(P<0.05)

    变异系数与性状的离散程度呈正相关,变异系数越大表明个体间的差异越大,多样性越丰富,选择的潜力就越大[17]。本研究表明:同一性状在不同居群中变异系数不同;同一居群中不同性状的变异系数也存在差异。5个雄性榧树居群间叶片的变异程度由大到小依次为叶质量、叶长、叶形指数、叶宽;雄球花的变异程度由大到小依次为花粉生活力、花粉得率、球花质量、球花纵径、球花横径、花形指数。花粉生活力的变异最为丰富,5个居群的花粉生活力为51.70%~58.51%,变异系数为39.04%~45.40%,平均值为42.36%;其次是花粉得率(31.03%~37.77%),平均达34.13%;叶宽和球花横径变异系数较小,分别为10.82%和12.13%(表3)。

    表 3  5个雄性榧树居群叶片与雄球花指标的极值与变异
    Table 3  Extreme values and variation in the parameters of leaves and male flowers of five natural populations in T. grandis
    居群叶质量叶宽
    最大值/g最小值/g平均值±标准差/g变异系数/%最大值/mm最小值/mm平均值±标准差/mm变异系数/%
    淳安 0.024 0.015 0.018±0.003 14.06 3.794 2.267 2.941±0.336 11.42
    临安 0.025 0.012 0.018±0.003 19.44 3.775 2.400 2.901±0.345 11.90
    富阳 0.023 0.013 0.017±0.003 15.36 3.422 2.344 2.850±0.281 9.86
    嵊州 0.029 0.013 0.018±0.004 20.34 3.254 2.186 2.791±0.334 11.97
    黄山 0.026 0.012 0.017±0.003 16.68 3.340 2.385 2.829±0.253 8.96
    居群 叶长 叶形指数
    最大值/mm 最小值/mm 平均值±标准差/mm 变异系数/% 最大值 最小值 平均值±标准差 变异系数/%
    淳安 22.319 16.124 18.99±1.82 9.58 0.174 0.137 0.155±0.012 7.91
    临安 25.475 13.650 18.41±2.84 15.45 0.228 0.107 0.161±0.029 18.27
    富阳 25.139 15.360 18.05±2.51 13.93 0.205 0.130 0.159±0.015 9.68
    嵊州 22.082 13.399 17.17±2.17 12.64 0.243 0.135 0.164±0.023 13.97
    黄山 20.800 14.000 17.28±1.88 10.90 0.192 0.139 0.165±0.015 9.06
    居群 球花质量 球花横径
    最大值/g 最小值/g 平均值±标准差/g 变异系数/% 最大值/mm 最小值/mm 平均值±标准差/mm 变异系数/%
    淳安 0.071 0.038 0.056±0.010 18.71 4.883 3.267 4.288±0.440 10.26
    临安 0.078 0.032 0.058±0.014 24.51 5.344 2.947 4.369±0.594 13.61
    富阳 0.089 0.034 0.054±0.014 25.96 6.283 3.714 4.452±0.551 12.37
    嵊州 0.093 0.033 0.052±0.016 31.49 5.975 3.589 4.321±0.542 12.54
    黄山 0.089 0.033 0.053±0.014 27.06 6.147 3.640 4.330±0.514 11.86
    居群 球花纵径 花形指数
    最大值/mm 最小值/mm 平均值±标准差/mm 变异系数/% 最大值 最小值 平均值±标准差 变异系数/%
    淳安 6.937 4.425 5.671±0.718 12.66 0.893 0.656 0.760±0.060 7.84
    临安 7.890 4.166 5.988±1.100 18.37 0.872 0.555 0.740±0.090 12.11
    富阳 8.555 4.768 6.121±1.016 16.59 0.928 0.602 0.736±0.088 11.91
    嵊州 10.884 4.458 5.900±1.423 24.12 0.938 0.434 0.753±0.110 14.57
    黄山 9.889 4.516 5.907±1.146 19.40 0.854 0.588 0.745±0.083 11.04
    居群 花粉得率 花粉生活力
    最大值/% 最小值/% 平均值±标准差/% 变异系数/% 最大值/% 最小值/% 平均值±标准差/% 变异系数/%
    淳安 26.38 5.82 17.00±5.28 31.03 92.71 21.61 58.51±25.05 42.80
    临安 32.19 8.32 17.38±6.11 35.16 97.26 19.34 51.70±21.52 41.62
    富阳 45.12 11.54 23.31±8.12 34.84 92.55 16.73 52.19±22.40 42.93
    嵊州 41.39 10.23 25.08±7.99 31.85 92.08 11.09 56.70±25.74 45.40
    黄山 36.56 8.72 20.67±7.81 37.77 94.30 23.90 56.56±22.08 39.04
    下载: 导出CSV 
    | 显示表格

    居群差异体现了居群对当地环境的不同适应状况,数值大小反映了不同居群对不同环境的适应性[18]。基于叶片的表型指标分析发现:5个天然居群的变异系数临安(16.27%)最大,其次是嵊州(14.73%),淳安(10.74%)最小;而雄球花是嵊州(26.82%)和黄山(26.42%)的变异系数较高,淳安(19.49%)最小。本研究中榧树雄株的生殖器官花的变异系数大于营养器官叶。

    榧树雄株的散粉时间不仅与遗传有关[15],也与地域气候、环境差异有关。榧树的雌雄花期不集中,且雄株花期比雌株早[19],散粉时间一般在4月中旬[20]。因此在新造林中要配置适当花期的雄性授粉树,满足雌花充分受粉的要求[15]

    经温室水培雄球花枝观测统计,雄球花散粉时间在4月7−17日,散粉周期约10 d。中花型所占比例最大(47株),占总样本数的38.84%,散粉时间在4月11−15日;晚花型比例最小(30株,24.79%),散粉时间在4月15−17日(表4)。5个居群中,淳安、临安、黄山这3个居群的中花型偏多,分别有11、13、13株,而富阳和嵊州的早花型略多,花期为4月7−11日(表4)。

    表 4  5个天然居群榧树雄株散粉期比较
    Table 4  Pollen availability of male flowers in T. grandis
    居群花期花期类型株数/株群内比例/%居群花期花期类型株数/株群内比例/%
    淳安 4月9−17日 2 11.76 嵊州 4月7−15日 17 70.84
    11 64.71 5 20.83
    4 23.53 2 8.33
    临安 4月9−17日 6 25.00 黄山 4月7−17日 7 21.87
    13 54.17 13 40.63
    5 20.83 12 37.50
    富阳 4月7−15日 12 50.00
    5 20.83
    7 29.17
    下载: 导出CSV 
    | 显示表格

    叶质量、叶长与叶形指数均呈极显著负相关(P<0.05),而其他指标间均为显著正相关(P<0.05)(表5)。这与董雷鸣等[15]的研究结果一致。

    表 5  雄性榧树叶片各指标之间的相关系数
    Table 5  Correlation coefficients among indexes of leaves in male T. grandis
    指标叶质量叶宽叶长叶形指数
    叶质量 1
    叶宽 0.381** 1   
    叶长 0.804** 0.476** 1  
    叶形指数 −0.626** 0.376** −0.513** 1
      说明:**表示差异极显著(P<0.01)
    下载: 导出CSV 
    | 显示表格

    球花质量与球花大小及花粉得率呈显著正相关(P<0.05),球花大小与花粉得率均显著正相关(P<0.05),花粉活力与花粉得率呈极显著正相关(P<0.01),而球花质量和球花纵径都与花形指数呈极显著负相关,其他指标间相关性不显著(表6)。

    表 6  榧树雄球花及各指标间的相关系数
    Table 6  Correlation coefficients among indexes of male flowers in T. grandis
    指标球花
    质量
    球花
    横径
    球花
    纵径
    花形
    指数
    花粉
    得率
    花粉
    生活力
    球花质量 1
    球花横径 0.735** 1
    球花纵径 0.788** 0.693** 1
    花形指数 −0.412** −0.020 −0.701** 1
    花粉得率 0.209* 0.238* 0.296* −0.164 1
    花粉生活力 0.103 0.010 0.035 −0.081 0.441** 1
      说明:*表示差异显著(P<0.05),**表示差异极显著(P<0.01)
    下载: 导出CSV 
    | 显示表格

    花粉会对植株坐果率高低、果实大小以及产量等产生直接影响[2122]。筛选适宜的雄性优株可以提供香榧基地授粉雄株不足、香榧树体坐果率低的现状,从而促进香榧产业健康发展。营养器官叶片受环境影响较大,因而榧树可基于生殖器官的性状初选核心种质[23]。本研究主要依据榧树雄株散粉时间、花粉生活力、花粉量的多少等综合进行雄株优株的筛选。早花类型中表现较好的优株有富阳居群的雄9、嵊州居群的雄5以及黄山居群的雄23,花粉生活力分别高达92.55%、92.08%、90.01%,花粉得率也在20%以上;中花类型表现最佳的优株有临安居群的雄22、嵊州居群的雄1,花粉活力均在90%以上,花粉得率也不低;而晚花类型中,淳安居群的雄3、临安居群的雄18以及黄山居群的雄1花粉生活力分别为92.71%、92.61%、91.65%,共初选36个单株作为优良授粉树,占所有供试材料的29.75%(表7)。

    表 7  雄性榧树优株的初选
    Table 7  Screening of male elite trees in T. grandis
    居群开花类型编号花粉生活力/%花粉得率/%花形指数
    淳安早花型CA0965.3526.380.656
    中花型CA0776.9721.950.790
    CA1082.5921.700.736
    CA1587.3619.270.736
    CA1685.9115.740.754
    晚花型CA0186.0022.190.743
    CA0392.7119.980.826
    CA1782.0522.160.735
    临安早花型LA0366.8618.920.764
    中花型LA1387.3132.190.802
    LA2297.2620.050.653
    晚花型LA1787.0020.980.818
    LA1892.6123.910.850
    富阳早花型FY0370.5634.280.782
    FY0681.5832.290.822
    FY0992.5523.020.605
    FY1485.0430.230.660
    FY1969.4433.370.602
    晚花型FY0184.0733.240.671
    嵊州早花型SZ0289.0934.480.750
    SZ0592.0838.230.725
    SZ1366.3920.710.730
    SZ1686.0530.280.799
    SZ1782.9625.740.588
    SZ2488.6325.670.766
    中花型SZ0191.5323.790.859
    黄山早花型HS2168.8935.010.754
    HS2390.0130.980.764
    HS2862.2529.760.607
    中花型HS1381.5923.910.751
    HS1568.1921.010.745
    HS1889.4220.760.797
    HS1981.8323.920.850
    晚花型HS0291.6525.670.705
    HS0487.6121.980.595
    HS2987.1624.810.801
    下载: 导出CSV 
    | 显示表格

    本研究发现:在居群间,叶片与雄球花的10个表型指标,只有叶长和花粉得率差异显著,而居群内,单株间10个指标均差异极显著,表明居群内的变异比居群间更加丰富。该结果与刘浩凯等[24]研究雌性榧树居群遗传多样性的结果基本一致。因此,为配置香榧授粉树的榧树雄株选育可选择优良单株。

    变异系数是衡量各观测性状变异程度的一个统计指标。本研究各指标的相对极差和变异系数的变化趋势完全不同,表明榧树雄株表型性状存在丰富的表型多样性。经过长期的自然选择,不同数量性状对环境形成了不同的适应能力。相关分析表明:雄性榧树的大部分表型性状相关性达显著或极显著水平,说明这些性状在环境适应中表现出相互调节的作用。

    雄性榧株以提供花粉为主要利用目的,花粉得率和花粉生活力在居群间和个体间变异大,且比较稳定,不仅有利于选择,选择结果也相对可靠。本研究显示:雄球花各指标变异系数大,球花大小与花粉得率呈显著正相关,直接影响花粉得率。因此优株初选应从花粉生活力、花粉得率及球花大小等综合考虑。基于上述指标初步筛选出36个优良雄性单株,其中8个单株的花粉生活力在90%以上。在今后的育种工作中,这些雄性优株应是优先考虑的对象。本研究所有单株的花粉得率最高值为38.23%,与董雷鸣等[15]的研究结果类似。

    居群内的变异主要受遗传因素的影响,而居群间的变异则与遗传和环境2个因素相关[25]。由于榧树雄株不结果,以往人为破坏严重,部分地区的雄株资源已濒临绝迹,雌雄比例严重失调。易官美等[26]对榧树资源分布进行调查发现:雌雄株比例在江西岩泉自然保护区为4∶1,在福建建瓯玉山镇居群为29∶1;在安徽居群为19∶1;在浙江诸暨赵家镇居群为99∶1。因此,加强雄性榧树资源保护刻不容缓,需加大种质资源调查与收集力度,建立雄性榧树优株资源库。

    本研究仅对雄性榧树的表型多样性进行初步研究,后续的研究将扩大居群选择的范围及居群个数,并结合分子生物学从DNA水平深入揭示雄性榧树天然居群的遗传变异特点和规律。

  • 图  1  4株真菌菌落形态及透明圈形态

    Figure  1  Morphologies of colony and transparent zone of four fungal strains

    图  2  4种真菌不同纤维素酶活性

    Figure  2  Different cellulase activities of four fungal species

    图  3  不同真菌组合对峙培养结果

    Figure  3  Antagonistic culture results of different fungal combinations

    图  4  黑曲霉与灰孔多年卧孔菌组合降解前后水稻秸秆傅立叶红外光谱

    Figure  4  FTIR spectra of rice straw before and after A. niger and P. tephropora combined degradation

    图  5  黑曲霉与灰孔多年卧孔菌组合降解前后水稻秸秆X射线衍射图谱

    Figure  5  XRD patterns of rice straw before and after A. niger and P. tephropora combined degradation

    图  6  黑曲霉与灰孔多年卧孔菌降解前后水稻秸秆扫描电镜图像(×1 000倍)

    Figure  6  SEM images of rice straw before and after A. niger and P. tephropora combined degradation (×1 000 times)

    表  1  4株真菌鉴定结果

    Table  1.   Identification results of four fungal strains

    菌株编号GenBank
    登记号
    相似菌种
    (GenBank登记号)
    相似度/
    %
    FU-1 OQ804643 Talaromyces allahabadensis
     (MH727608)
    100.00
    FU-2 OQ804660 T. aculeatus (HQ392496) 100.00
    FU-4 OQ804669 Aspergillus niger
      (MG228418)
    100.00
    FU-6 OQ804677 Perenniporia tephropora
     (MW077095)
    99.84
    下载: 导出CSV

    表  2  水稻秸秆干物质与木质纤维素组分的降解率

    Table  2.   Dry matter and lignocellulose components degradation rates of rice straw

    处理组干物质降解率/%纤维素降解率/%半纤维素降解率/%木质素降解率/%
    安拉阿巴德篮状菌 26.38±0.33 e 27.86±0.49 e 19.44±2.05 d 13.06±2.56 c
    刺孢篮状菌 33.79±1.16 bc 38.49±0.93 c 21.75±2.20 d 28.96±2.79 a
    黑曲霉 32.18±0.13 cd 40.72±1.71 bc 30.45±1.40 c 26.87±2.13 a
    灰孔多年卧孔菌 36.61±1.02 ab 33.96±0.67 d 59.77±0.90 a 29.66±1.91 a
    安拉阿巴德篮状菌 + 黑曲霉 33.66±1.07 bc 39.91±2.99 bc 33.68±2.34 c 24.38±1.36 ab
    安拉阿巴德篮状菌 + 灰孔多年卧孔菌 29.21±1.57 de 45.60±2.98 b 50.41±1.94 b 14.69±2.33 c
    黑曲霉 + 灰孔多年卧孔菌 38.27±1.32 a 62.59±0.70 a 51.75±2.56 b 17.39±0.36 bc
      说明:数值为平均值±标准差。同列不同小写字母表示不同处理组的降解率之间差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 张晓庆, 王梓凡, 参木友, 等. 中国农作物秸秆产量及综合利用现状分析[J]. 中国农业大学学报, 2021, 26(9): 30 − 41.

    ZHANG Xiaoqing, WANG Zifan, CAN Muyou, et al. Analysis of yield and current comprehensive utilization of crop straw in Chana [J]. Journal of China Agricultural University, 2021, 26(9): 30 − 41.
    [2] NIU Wenjuan, HAN Lujia, LIU Xian, et al. Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified China’s crop residues [J]. Energy, 2016, 100(1): 238 − 250.
    [3] YU Qiong, LIU Ronghou, LI Kun, et al. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China [J]. Renewable &Sustainable Energy Reviews, 2019, 107: 51 − 58.
    [4] KUMAR B, BHARDWAJ N, AGRAWAL K, et al. Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept [J/OL]. Fuel Processing Technology, 2020, 199: 106244[2023-01-06]. doi:10.1016/j.fuproc.2019.106244.
    [5] RAVALASON H, JAN G, MOLLÉ D, et al. Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood [J]. Applied Microbiology and Biotechnology, 2008, 80(4): 719 − 733.
    [6] TIAN Chaoguang, BEESON W T, IAVARONE A T, et al. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa [J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22157 − 22162.
    [7] COUTURIER M, NAVARRO D, OLIVÉ C, et al. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis [J/OL]. BMC Genomics, 2012, 13(1): 57[2023-01-06]. doi:10.1186/1471-2164-13-57.
    [8] SUN Zhenjie, MAO Yanyong, LIU Shanjian, et al. Effect of pretreatment with Phanerochaete chrysosporium on physicochemical properties and pyrolysis behaviors of corn stover [J/OL]. Bioresource Technology, 2022, 361: 127687[2023-01-06]. doi:10.1016/j.biortech.2022.127687.
    [9] LI Xiong, YI Kangle, LEI Hong, et al. Effects of adding different concentrations of Aspergillus niger inoculant on the quality of mixed rice straw silage [J]. Pakistan Journal of Agricultural Sciences, 2022, 59(2): 357 − 364.
    [10] ZAHARI N I, SHAH U K M, ASA’ARI A Z M, et al. Selection of potential fungi for production of cellulase-poor xylanase from rice straw [J]. Bioresources, 2016, 11(1): 1162 − 1175.
    [11] AN Qi, LI Congsheng, YANG Jing, et al. Evaluation of laccase production by two white-rot fungi using solid-state fermentation with different [J]. Bioresources, 2021, 16(3): 5287 − 5300.
    [12] SHIRKAVAND E, BAROUTIAN S, GAPES D J, et al. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment: a review [J]. Renewable &Sustainable Energy Reviews, 2016, 54: 217 − 234.
    [13] BRUNE A. Symbiotic digestion of lignocellulose in termite guts [J]. Nature Reviews Microbiology, 2014, 12(3): 168 − 180.
    [14] OZBAYRAM E G, KLEINSTEUBER S, NIKOLAUSZ M. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass [J]. Applied Microbiology and Biotechnology, 2020, 104(2): 489 − 508.
    [15] 王成盼, 梁世优, 殷学杰, 等. 蚁巢伞对木质纤维素的降解作用[J]. 应用与环境生物学报, 2019, 25(3): 729 − 735.

    WANG Chengpan, LIANG Shiyou, YIN Xuejie, et al. Degradation of lignocellulose by Termitomyces [J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(3): 729 − 735.
    [16] SIJINAMANOJ V, MUTHUKUMAR T, MUTHURAJA R, et al. Ligninolytic valorization of agricultural residues by Aspergillus nomius and Trichoderma harzianum isolated from gut and comb of Odontotermes obesus (Termitidae) [J/OL]. Chemosphere, 2021, 284: 131384[2023-01-06]. doi: 10.1016/j.chemosphere.2021.131384.
    [17] SLUITER J B, RUIZ R O, SCARLATA C J, et al. Compositional analysis of lignocellulosic feedstocks (1) review and description of methods [J]. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9043 − 9053.
    [18] 张超, 李艳宾, 张磊, 等. 真菌产纤维素酶培养基中刚果红转移机理研究[J]. 微生物学通报, 2006, 33(6): 12 − 16.

    ZHANG Chao, LI Yanbin, ZHANG Lei, et al. Study on transition mechanism of congo-red in cellulase-production fungi medium [J]. Microbiology China, 2006, 33(6): 12 − 16.
    [19] CHANG Shanshan, SALMÉN L, OLSSON A M, et al. Deposition and organisation of cell wall polymers during maturation of poplar tension wood by FTIR microspectroscopy [J]. Planta, 2014, 239(1): 243 − 254.
    [20] BENKO E M, CHUHCHIN D G, MALKOV A V, et al. Change in the crystallinity of wheat straw during ozone treatment [J]. Russian Journal of Physical Chemistry, 2020, 94(6): 1149 − 1152.
    [21] MUSTAFA A M, POULSEN T G, SHENG K. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion [J]. Applied Energy, 2016, 180: 661 − 671.
    [22] 尹蕾, 王伟舵, 陈子璇, 等. 水稻秸秆高效降解菌株的筛选鉴定及其降解产物分析[J]. 江苏农业科学, 2018, 46(19): 292 − 296.

    YI Lei, WANG Weiduo, CHEN Zixuan, et al. Screening, identification and degradation product analysis of rice straw [J]. Jiangsu Agricultural Sciences, 2018, 46(19): 292 − 296.
    [23] SHENG Tao, ZHAO Lei, GAO Lingfeng, et al. Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw [J]. RSC Advances, 2018, 8(41): 22924 − 22930.
    [24] WEI Yuquan, WU Di, WEI Dan, et al. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities [J]. Bioresource Technology, 2019, 271: 66 − 74.
    [25] 江高飞, 杨天杰, 郑海平, 等. 降解玉米秸秆真菌复合菌系的构建及其降解效果评价[J]. 植物营养与肥料学报, 2021, 27(2): 284 − 292.

    JIANG Gaofei, YANG Tianjie, ZHEN Haiping, et al. Construction and evaluation of fungal consortia effect on maize straw degradation [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 284 − 292.
    [26] KOLASA M, AHRING B K, LÜBECK P S, et al. Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production [J]. Bioresource Technology, 2014, 169: 143 − 148.
    [27] PENTTILA P A, IMAI T, HEMMING J, et al. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites [J]. Carbohydrate Polymers, 2018, 190: 95 − 102.
    [28] MUSSATTO S I, FERNANDES M, MILAGRES A M F, et al. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain [J]. Enzyme and Microbial Technology, 2008, 43(2): 124 − 129.
    [29] KARIMI K, TAHERZADEH M J. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity [J]. Bioresource Technology, 2016, 200: 1008 − 1018.
    [30] TAN Xuesong, ZHANG Quan, WANG Wen, et al. Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation [J]. Fuel, 2019, 249: 334 − 340.
  • [1] 楼高波, 刘丽娜, 傅深渊, 李亮, 曹森科, 程型国.  纤维素/SiO2润滑脂的制备及性能分析 . 浙江农林大学学报, 2024, 41(3): 644-650. doi: 10.11833/j.issn.2095-0756.20230492
    [2] 漆梦雯, 沈毅, 羊桂英, 余婷, 李吴晗, 周琪欢, 谢晓俊, 朱娅宁, 莫建初.  金属离子对黑翅土白蚁消化代谢的影响 . 浙江农林大学学报, 2024, 41(1): 154-160. doi: 10.11833/j.issn.2095-0756.20230219
    [3] 杨波, 王邵军, 赵爽, 张路路, 张昆凤, 樊宇翔, 解玲玲, 王郑均, 郭志鹏, 肖博.  丛枝菌根真菌共生对石漠化生境白枪杆生长及光合特性的影响 . 浙江农林大学学报, 2022, 39(5): 1028-1036. doi: 10.11833/j.issn.2095-0756.20210740
    [4] 朱娅宁, 羊桂英, 周琪欢, 谢晓俊, 漆梦雯, 沈毅, 莫建初.  黑翅土白蚁菌圃微生物对蚁巢伞生长的影响 . 浙江农林大学学报, 2022, 39(3): 598-606. doi: 10.11833/j.issn.2095-0756.20210478
    [5] 曹婷婷, 侯守鹏, 袁晓栋, 何影.  纤维素饵料对白蚁的诱杀效果 . 浙江农林大学学报, 2018, 35(1): 178-182. doi: 10.11833/j.issn.2095-0756.2018.01.024
    [6] 李秀云, 陈晓沛, 徐英武, 曹友志.  毛竹生长过程中纤维素合成酶基因的时空表达和功能预测 . 浙江农林大学学报, 2017, 34(4): 565-573. doi: 10.11833/j.issn.2095-0756.2017.04.001
    [7] 石莉莉, 谭贤, 郦行杰, 郭明.  新型催化功能纤维素的制备及催化降解四环素机制 . 浙江农林大学学报, 2016, 33(5): 881-889. doi: 10.11833/j.issn.2095-0756.2016.05.022
    [8] 傅小萍, 姚珊珊, 王莹, 郭明.  新型硅基固载材料的制备及固定化酶性能 . 浙江农林大学学报, 2016, 33(2): 315-321. doi: 10.11833/j.issn.2095-0756.2016.02.018
    [9] 庞景, 童再康, 黄华宏, 林二培, 刘琼瑶.  杉木纤维素合成酶基因CesA的克隆及表达分析 . 浙江农林大学学报, 2015, 32(1): 40-46. doi: 10.11833/j.issn.2095-0756.2015.01.006
    [10] 蒋玉俭, 李新鑫, 孙飞飞, 余学军.  竹林土壤中纤维素降解菌的筛选及产酶条件优化 . 浙江农林大学学报, 2015, 32(6): 821-828. doi: 10.11833/j.issn.2095-0756.2015.06.001
    [11] 骆静怡, 傅威锐, 潘程远.  木腐真菌的鉴定及对不同木材的腐朽能力 . 浙江农林大学学报, 2015, 32(1): 1-10. doi: 10.11833/j.issn.2095-0756.2015.01.001
    [12] 郦宜斌, 郭明, 燕冰宇, 郭斌, 王春歌.  新型水热方法降解纤维素及降解产物分析 . 浙江农林大学学报, 2014, 31(5): 730-738. doi: 10.11833/j.issn.2095-0756.2014.05.011
    [13] 陈宇飞, 吴强, 徐光密, 王静芳, 傅深渊, 钱俊.  五节芒纤维素纳米晶体制备工艺的正交分析 . 浙江农林大学学报, 2014, 31(3): 399-403. doi: 10.11833/j.issn.2095-0756.2014.03.011
    [14] 郭明, 张璐颖, 王鹏, 余婧.  羟丙基纤维素乙酰乙酰化改性材料的制备及表征 . 浙江农林大学学报, 2010, 27(4): 595-600. doi: 10.11833/j.issn.2095-0756.2010.04.020
    [15] 郭明, 王鹏, 李铭慧, 杨君, 王春鹏, 储富祥.  三甲基硅羟乙基纤维素醚的合成、表征及性能 . 浙江农林大学学报, 2008, 25(1): 1-6.
    [16] 吴石金, 罗锡平, 夏一峰.  里氏木霉产纤维素酶系各组分分泌特性 . 浙江农林大学学报, 2003, 20(2): 146-150.
    [17] 宋晓钢.  浙江等翅目昆虫(白蚁)考察 . 浙江农林大学学报, 2002, 19(3): 288-291.
    [18] 苏利英.  莫干山的大型真菌资源 . 浙江农林大学学报, 1999, 16(2): 157-163.
    [19] 刘力, 周建钟, 余世袁, 单谷.  高节竹笋加工废料的纤维素酶水解及饲料开发 . 浙江农林大学学报, 1997, 14(3): 262-266.
    [20] 刘力, 刘超纲, 余世袁.  啤酒麦糟制备蛋白饲料过程中蛋白质的转化* . 浙江农林大学学报, 1995, 12(1): 40-45.
  • 期刊类型引用(0)

    其他类型引用(1)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230140

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/6/1224

图(6) / 表(2)
计量
  • 文章访问数:  640
  • HTML全文浏览量:  136
  • PDF下载量:  46
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-02-06
  • 修回日期:  2023-04-23
  • 录用日期:  2023-05-19
  • 刊出日期:  2023-11-23

黑翅土白蚁共生真菌对水稻秸秆生物降解研究

doi: 10.11833/j.issn.2095-0756.20230140
    基金项目:  国家自然科学基金面上资助项目(32071771)
    作者简介:

    沈毅 (ORCID: 0000-0002-9533-1632),从事白蚁肠道微生物研究。E-mail: 961058115@qq.com

    通信作者: 莫建初 (ORCID: 0000-0001-5066-0734 ),教授,博士,从事城市昆虫学与害虫综合治理研究。E-mail: mojianchu@zju.edu.cn
  • 中图分类号: S216.2

摘要:   目的  挖掘黑翅土白蚁Odontotermes formosanus共生真菌在秸秆资源利用上的应用潜力,为实现秸秆生物降解产业化补充菌种资源并提供理论依据。  方法  以羧甲基纤维素钠(CMC-Na)平板为分离培养基,采用刚果红染色法筛选,从黑翅土白蚁肠道中分离筛选具有木质纤维素降解活性的真菌,并测定纤维素酶活性。在液态发酵条件下,评估不同真菌以及真菌组合对水稻Oryza sativa秸秆的降解效果,利用傅立叶红外光谱、X射线晶体衍射和扫描电镜分析降解前后水稻秸秆的理化性质。  结果  从黑翅土白蚁肠道中共分离到4种具有木质纤维素降解活性的真菌,经鉴定分别为安拉阿巴德篮状菌Talaromyces allahabadensis、刺孢篮状菌T. aculeatus、黑曲霉Aspergillus niger和灰孔多年卧孔菌Perenniporia tephropora。纤维素酶活结果显示:黑曲霉的内切葡聚糖酶和外切葡聚糖酶活性最高,安拉阿巴德篮状菌的β-葡萄糖苷酶活性最高。水稻秸秆降解试验表明:黑曲霉与灰孔多年卧孔菌双菌组合具有最强的秸秆降解能力,20 d内可降解秸秆中38.27%的干物质、62.59%的纤维素和51.75%的半纤维素。降解后水稻秸秆内部化学键和分子间作用力被破坏,结晶度由22.44%上升至32.53%,秸秆表面崩解碎裂,结构蓬松化。  结论  从黑翅土白蚁肠道分离得到的黑曲霉和灰孔多年卧孔菌在组合降解水稻秸秆时表现出极强的降解能力,在秸秆生物降解产业化上具有潜在的开发价值。图6表2参30

English Abstract

詹利云, 刘琏, 曾燕如, 等. 雄性榧树天然居群表型多样性及优株初选[J]. 浙江农林大学学报, 2020, 37(6): 1120-1127. DOI: 10.11833/j.issn.2095-0756.20190676
引用本文: 沈毅, 漆梦雯, 羊桂英, 等. 黑翅土白蚁共生真菌对水稻秸秆生物降解研究[J]. 浙江农林大学学报, 2023, 40(6): 1224-1231. DOI: 10.11833/j.issn.2095-0756.20230140
ZHAN Liyun, LIU Lian, ZENG Yanru, et al. Phenotypic diversity of male cones and the selection of superior plants among male populations in Torreya grandis[J]. Journal of Zhejiang A&F University, 2020, 37(6): 1120-1127. DOI: 10.11833/j.issn.2095-0756.20190676
Citation: SHEN Yi, QI Mengwen, YANG Guiying, et al. Biodegradation of rice straw by symbiotic fungi of Odontotermes formosanus[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1224-1231. DOI: 10.11833/j.issn.2095-0756.20230140
  • 中国作为农业大国之一,具有丰富的秸秆资源。据统计,中国秸秆年生产量达8.65 亿t,但每年有1 亿t秸秆废置,造成资源浪费和环境污染[1]。秸秆主要成分为木质纤维素,其特殊的“纤维素-半纤维素-木质素”三维网络结构在自然状态下难以降解,严重限制了秸秆资源利用[2]。随着技术不断发展,目前已开发出多种秸秆处理方法,如高温热解、蒸汽爆破、酸碱处理等[3]。微生物降解法以成本低、耗能小、环境友好等优点受到广泛关注[4]。相较于细菌和放线菌,真菌能产生更多种类的酶,如纤维素酶、木聚糖酶、果胶酶、过氧化物酶、糖苷酶等来协同降解木质纤维素[57],成为当前研究热点。目前,已开发的秸秆降解真菌主要有黄孢原毛平革菌Phanerochaete chrysosporium、黑曲霉Aspergillus niger、草酸青霉Penicillium oxalicu、糙皮侧耳Pleurotus ostreatus[811],但部分真菌仍存在降解周期长、生长条件严格、降解不稳定等缺点[12],难以实现产业化,因此,仍需进一步挖掘高效稳定的木质纤维素降解真菌。

    白蚁是自然界中高效的木质纤维素分解者,其特殊的白蚁-共生菌降解系统可消化植物中74%~99%的纤维素和65%~87%的半纤维素[13],降解效率为瘤胃动物的3倍以上[14]。有研究表明:白蚁的共生真菌具有较强的木质纤维素降解能力,如王成盼等[15]研究发现:黑翅土白蚁Odontotermes formosanus菌圃共生真菌蚁巢伞Termitomyces在固体发酵条件下可降解木质食料中20.98%的纤维素、31.89%的半纤维素和11.68%的木质素。SIJINAMANOJ等[16]从胖身土白蚁O. obesus菌圃和肠道中分离得到红绶曲霉A. nomius和哈茨木霉Trichoderma harzianum,分别使不同农业废弃物纤维素降低10.83%~15.53%和8.50%~36.30%。

    为进一步挖掘白蚁共生真菌在秸秆资源利用上的应用潜力,本研究从黑翅土白蚁肠道中分离筛选木质纤维素降解真菌,挖掘高效降解水稻Oryza sativa秸秆的真菌菌种资源,为秸秆生物降解产业化提供理论基础。

    • 供试黑翅土白蚁蚁巢采自福建省三明市大田县,26 ℃避光饲养。供试水稻秸秆收集自江苏省连云港市,烘干粉碎后过100目筛,常温保存。

    • 羧甲基纤维素钠(CMC-Na)培养基:CMC-Na 1.000 g、硝酸钠 0.200 g、氯化铵 0.200 g、磷酸二氢钾 0.100 g、磷酸氢二钾 0.100 g、蛋白胨 0.100 g、七水硫酸镁 0.050 g、氨苄青霉素 0.005 g、卡那霉素 0.005 g、琼脂 4.000 g、蒸馏水 100 mL,pH 7。

      水稻秸秆培养基:水稻秸秆粉(100目) 2.000 g、硝酸钠 0.200 g、氯化铵 0.200 g、蛋白胨 0.200 g、磷酸二氢钾 0.100 g、磷酸氢二钾 0.100 g、七水硫酸镁 0.050 g、蒸馏水 100 mL,pH 7。

    • 肠道匀浆制备:取黑翅土白蚁成熟工蚁25只,在无菌超净台中用体积分数为75%的乙醇浸泡消毒5 min,无菌水清洗3次后用解剖针压住腹部末端,拉出白蚁肠道,于5 mL质量分数为0.9%的无菌生理盐水中研磨成匀浆。

      分离:肠道匀浆液稀释100倍后,取100 µL均匀涂布于CMC-Na平板上,37 ℃避光培养至单菌落,长成后划线分离,重复3次后获纯培养菌株。

      筛选:将直径5 mm菌饼接种于CMC-Na平板,37 ℃避光培养5 d后加入20 mL 1 g·L−1的刚果红溶液,染色1 h弃去染色液,加入1 mol·L−1的氯化钠溶液20 mL脱色30 min,观察菌株是否产生透明圈。

    • 将纯化后菌株送至浙江尚亚生物技术有限公司,提取分离真菌DNA后,选取通用引物ITS1与ITS4扩增真菌ITS序列,将扩增产物连接至pTOPO-T载体并转入感受态细胞,使用M13F/13R引物扩增载体序列,测序后通过BLAST在线比对菌种,同时于GenBank登记序列号。

    • 取直径5 mm菌饼接种于100 mL CMC-Na液体培养基(配方同CMC-Na培养基,不加琼脂),于27 ℃、180 r·min−1的摇床内避光培养9 d后,取2 mL液体培养基,4 ℃ 8 000 r·min−1条件下离心5 min,上清液即为粗酶液。

    • 取200 μL粗酶液(对照组取无菌CMC-Na液体培养基),加入800 μL 质量分数为1% CMC-Na溶液,50 ℃反应60 min后加入1 mL 3,5-二硝基水杨酸(DNS)溶液,沸水浴反应10 min,冷却后稀释至5 mL,于540 nm波长下测定吸光度值,计算酶活性。

    • 取200 μL粗酶液(对照组取无菌CMC-Na液体培养基),加入800 μL 质量分数为1%微晶纤维素溶液,50 ℃反应60 min后加入1 mL 3,5-二硝基水杨酸(DNS)溶液,沸水浴反应10 min,冷却后稀释至5 mL,于540 nm波长下测定吸光度值,计算酶活性。

    • 取100 μL粗酶液(对照组取无菌CMC-Na液体培养基),加入200 μL 10 mmol·L−1 对硝基苯基-β-D-吡喃葡萄糖(p-NPG)溶液,50 ℃反应30 min后加入2 mL 1 mol·L−1 碳酸钠溶液终止反应并显色,于400 nm波长下测定吸光度,计算酶活性。

    • 本研究酶活性单位定义:在50 ℃,pH 7条件下,1 L酶液在1 s内水解底物生成1 μmol还原产物所需的酶量为1个酶活性单位(μkat·L−1)。

    • 将CMC-Na平板分为2个半圆区域,分别在2个半圆区域内接种直径为0.5 cm的不同真菌菌饼,37 ℃黑暗条件下对峙培养7~15 d,观察真菌间拮抗反应。

    • 将直径0.5 cm真菌菌饼(双菌组合各1/2,加入直径为0.5 cm菌饼)接入灭菌后水稻秸秆培养基(秸秆干质量记为m),37 ℃避光培养20 d,使用20目筛分离真菌菌丝和秸秆,秸秆80 ℃烘干12 h后称干质量(记为md),计算干物质降解率(Rdm):Rdm= (mmd)/m×100%。

    • 木质纤维素组分质量分数测定参考美国国家可再生能源实验室(NREL)方法[17],并有所简化:取0.2 g干燥植物材料(记为m0),加入3 mL体积分数为72%的硫酸,摇匀,30 ℃水浴1 h。稀释酸体积分数至4%(体积记为v),转移至聚四氟乙烯耐压瓶中,于烘箱中121 ℃酸解2 h。使用砂芯漏斗抽滤,滤纸采用已烘干并称量的无灰定量滤纸(记为m1)。滤渣连同滤纸转移至陶瓷坩埚,80 ℃过夜烘干后称量(记为m2),随后于马弗炉中550 ℃煅烧4 h,冷却后称量(记为m3)。滤液以质量分数为4%的氢氧化钠中和至中性后(稀释倍数记为k),用葡萄糖试剂盒测定葡萄糖质量分数(记为Cglu),用DNS法测定还原糖质量分数(记为Crs),计算纤维素、半纤维素和木质素质量分数(分别记为CcelChemClig),最后根据降解前组分质量分数(记为C)和降解后组分质量分数(记为Cd)计算组分降解率(记为Rlc)。计算公式如下:Ccel = Cglu×v×k×0.90/m0×100%;Chem = (CrsCgluv×k×0.88/m0×100%;Clig = (m2m1m3)/m0×100%;Rlc = [1−(m×C)/(md×Cd)]×100%。其中:0.90为纤维素单糖转化系数,0.88为半纤维素单糖转化系数。

    • 取降解前后水稻秸秆样品,烘干后研磨成粉末,使用傅立叶红外光谱仪(Thermo Scientific NICOLET iS50FT-IR)分析。分辨率4 cm−1,扫描次数32次,扫描波长500~4 000 cm−1

    • 取降解前后水稻秸秆样品,烘干后研磨成粉末,使用X射线衍射仪(Bruker D8 Advance)分析。扫描范围5°~90°,扫描速度5°·min−1,计算纤维素结晶度(D) = (I002Iam)/I002×100%。其中:I002表示2θ = 22.5°衍射峰最大值;Iam表示2θ = 18.0°衍射峰最小值。

    • 取降解前后水稻秸秆样品,烘干后研磨成粉末后用扫描电镜(Hitachi SU8010)观察。加速电压:3.0 kV;放大倍数:1 000倍。

    • 使用SPSS 29对不同真菌的纤维素酶活性和水稻秸秆降解率进行方差齐性检验与显著性分析。

    • 本研究共从黑翅土白蚁肠道中分离出6株真菌,分别记为FU-1~FU-6。经刚果红染色后筛选出FU-1、FU-2、FU-4和FU-6共4株产生明显透明圈的真菌,其菌落形态与透明圈形态如图1所示,其中产生透明圈初步表明其能将纤维素降解为多聚糖类物质,具有潜在的木质纤维素降解活性[18]

      图  1  4株真菌菌落形态及透明圈形态

      Figure 1.  Morphologies of colony and transparent zone of four fungal strains

    • 对4株具备木质纤维素降解活性的真菌进行分子生物学鉴定,其中FU-1、FU-2属于篮状菌属Talaromyces,分别鉴定为安拉阿巴德篮状菌T. allahabadensis和刺孢篮状菌T. aculeatus。FU-4属于曲霉属Aspergillus,鉴定为黑曲霉A. niger。FU-6属于多年卧孔菌属Perenniporia,鉴定为灰孔多年卧孔菌P. tephropora(表1)。

      表 1  4株真菌鉴定结果

      Table 1.  Identification results of four fungal strains

      菌株编号GenBank
      登记号
      相似菌种
      (GenBank登记号)
      相似度/
      %
      FU-1 OQ804643 Talaromyces allahabadensis
       (MH727608)
      100.00
      FU-2 OQ804660 T. aculeatus (HQ392496) 100.00
      FU-4 OQ804669 Aspergillus niger
        (MG228418)
      100.00
      FU-6 OQ804677 Perenniporia tephropora
       (MW077095)
      99.84
    • 图2结果表明:黑曲霉的内切葡聚糖酶和外切葡聚糖酶活性显著高于其他真菌(P<0.05),分别达4.361和1.893 μkat·L−1,表明其具有较强的纤维素链切割和末端水解能力。安拉阿巴德篮状菌的β-葡萄糖苷酶活性显著高于其他真菌(P<0.05),达11.133 μkat·L−1,说明具有较强的纤维二糖水解能力。

      图  2  4种真菌不同纤维素酶活性

      Figure 2.  Different cellulase activities of four fungal species

    • 将筛选得到的4株真菌两两组合对峙,发现安拉阿巴德篮状菌与刺孢篮状菌(图3A)、刺孢篮状菌与黑曲霉(图3B)和刺孢篮状菌与灰孔多年卧孔菌(图3C)菌落之间产生抑菌圈,表现出相互拮抗。而安拉阿巴德篮状菌与黑曲霉(图3D)、安拉阿巴德篮状菌与灰孔多年卧孔菌(图3E)和黑曲霉与灰孔多年卧孔菌(图3F)菌落之间可接触生长,具备共生协作降解木质纤维素的潜能。

      图  3  不同真菌组合对峙培养结果

      Figure 3.  Antagonistic culture results of different fungal combinations

    • 单独降解时,4株真菌均表现出一定降解能力(表2),其中刺孢篮状菌和黑曲霉具有显著较高的纤维素降解率,分别达38.49%和40.72%,灰孔多年卧孔菌具有极高的半纤维素降解率,达59.77%,同时这3种真菌的木质素降解率也达到最高水平。组合降解时,部分真菌组合表现出更强的降解能力,其中当黑曲霉与灰孔多年卧孔菌“强强联合”后,其干物质降解率和纤维素降解率进一步提高,达38.27%和62.59%,同时半纤维素降解率仍保持较高水平,达51.75%。尽管其木质素降解率有所降低,但综合来看,该真菌组合表现出最强的水稻秸秆降解能力,具有潜在的开发价值。

      表 2  水稻秸秆干物质与木质纤维素组分的降解率

      Table 2.  Dry matter and lignocellulose components degradation rates of rice straw

      处理组干物质降解率/%纤维素降解率/%半纤维素降解率/%木质素降解率/%
      安拉阿巴德篮状菌 26.38±0.33 e 27.86±0.49 e 19.44±2.05 d 13.06±2.56 c
      刺孢篮状菌 33.79±1.16 bc 38.49±0.93 c 21.75±2.20 d 28.96±2.79 a
      黑曲霉 32.18±0.13 cd 40.72±1.71 bc 30.45±1.40 c 26.87±2.13 a
      灰孔多年卧孔菌 36.61±1.02 ab 33.96±0.67 d 59.77±0.90 a 29.66±1.91 a
      安拉阿巴德篮状菌 + 黑曲霉 33.66±1.07 bc 39.91±2.99 bc 33.68±2.34 c 24.38±1.36 ab
      安拉阿巴德篮状菌 + 灰孔多年卧孔菌 29.21±1.57 de 45.60±2.98 b 50.41±1.94 b 14.69±2.33 c
      黑曲霉 + 灰孔多年卧孔菌 38.27±1.32 a 62.59±0.70 a 51.75±2.56 b 17.39±0.36 bc
        说明:数值为平均值±标准差。同列不同小写字母表示不同处理组的降解率之间差异显著(P<0.05)。
    • 经黑曲霉与灰孔多年卧孔菌组合降解后,水稻秸秆部分红外吸收峰明显下降(图4),其中3 400 cm−1附近吸收峰与—OH伸缩振动相关[19],说明秸秆部分氢键被破坏,分子间作用力减弱;1 460 cm−1附近吸收峰与半纤维素中亚甲基(CH2)弯曲振动相关[19],表明真菌组合能有效破坏半纤维素结构;1 370和1 315 cm−1附近吸收峰分别与纤维素中CH2摇摆振动和C—H弯曲振动相关[20],证明真菌组合具有一定的纤维素分解能力;1 235 cm−1附近吸收峰与半纤维素-木质素复合物中O=C—C伸缩振动相关[19],说明部分复合结构被瓦解,半纤维素与木质素发生分离;1 160 cm−1附近吸收峰与碳链中C—O—C伸缩振动相关[19],表明在酶作用下,秸秆中部分碳链结构被破坏,分子聚合度下降。

      图  4  黑曲霉与灰孔多年卧孔菌组合降解前后水稻秸秆傅立叶红外光谱

      Figure 4.  FTIR spectra of rice straw before and after A. niger and P. tephropora combined degradation

    • 经黑曲霉与灰孔多年卧孔菌组合降解后,水稻秸秆纤维素非结晶区衍射峰(2θ = 18.0°)明显下降,纤维素结晶区衍射峰(2θ = 22.5°)无明显变化,水稻秸秆纤维素结晶度由22.44%上升至32.53%(图5)。说明相较于纤维素结晶区,真菌组合分泌的纤维素酶能够更容易分解纤维素非结晶区。但随着纤维素结晶度不断升高,纤维素整体晶体结构变为更加紧凑,推测对于进一步降解利用纤维素产生一定阻碍作用[20]

      图  5  黑曲霉与灰孔多年卧孔菌组合降解前后水稻秸秆X射线衍射图谱

      Figure 5.  XRD patterns of rice straw before and after A. niger and P. tephropora combined degradation

    • 通过扫描电镜观察(图6),发现黑曲霉与灰孔多年卧孔菌组合降解后水稻秸秆表面由紧密光滑变为粗糙隆起,纤维结构崩解断裂,结构蓬松化,并产生大量孔隙和碎片,推测真菌菌丝可能通过孔隙深入秸秆内部,在内外双重降解下加速破坏秸秆结构。

      图  6  黑曲霉与灰孔多年卧孔菌降解前后水稻秸秆扫描电镜图像(×1 000倍)

      Figure 6.  SEM images of rice straw before and after A. niger and P. tephropora combined degradation (×1 000 times)

    • 随着分子生物学与环境生物学技术不断成熟,近年来利用真菌绿色降解水稻秸秆已取得了一定进展。MUSTAFA等[21]研究发现:糙皮侧耳和里氏木霉T. reesei对水稻秸秆纤维素、半纤维素和木质素降解率可分别达13.1%、23.7%、35.3%和20.1%、23.3%、23.6%。尹蕾等[22]从土壤中分离出的枝孢菌Cladosporium sp. BD-19可降解水稻秸秆中26.42%的纤维素、16.64%的半纤维素和11.43%的木质素。SHENG等[23]利用逆型金钱菌Gymnopus contrarius降解水稻秸秆后,去除了22.9%的纤维素、22.7%的半纤维素和41.9%的木质素。与上述研究相比,本研究从黑翅土白蚁肠道分离筛选的部分真菌具有更强的降解能力,其中刺孢篮状菌和黑曲霉具有更强的纤维素降解能力,降解率分别达38.49%和40.72%,灰孔多年卧孔菌具有更强的半纤维素降解能力,降解率达59.77%,推测这些共生真菌在白蚁消化木质食料过程中发挥一定协同降解作用。

      在自然状态下,秸秆腐解往往是多种微生物共同参与的结果,将具有酶系互补作用的真菌组合培养不仅弥补部分菌种酶系不完整或个别酶活低的缺陷,同时还能减缓反馈抑制,从而提高降解效果[24]。江高飞等[25]研究发现:将草酸青霉等5种真菌复配后,复合菌系的秸秆降解能力和纤维素酶活性随着菌株种类增多而逐步升高。KOLASA等[26]将里氏木霉分别与黑曲霉等3种曲霉混合培养后,小麦Triticum aestivum秸秆降解率效果相较于单独降解均提升80%左右。本研究发现:当黑曲霉与灰孔多年卧孔菌“强强联合”后,水稻秸秆干物质降解率和纤维素降解率进一步提高,分别达38.27%和62.59%,同时半纤维素降解率仍保持较高水平,达51.75%,表现出极强的降解能力。进一步研究发现:两者组合能有效破坏水稻秸秆中半纤维素-木质素复合物内部化学键并减弱分子间作用力,推测在降解过程中纤维素、半纤维素和木质素三者间失去“黏性”,纤维素向外暴露,释放更多酶切位点供以降解[2728]。本研究也证实:真菌组合更偏好分解纤维素非结晶区,推测是由于非结晶区吸水性更强,更容易与酶结合[29]。秸秆化学结构被破坏的同时,其物理结构也显著改变,降解后的秸秆表面崩解碎裂,结构蓬松化,产生大量碎片和孔隙,不仅有利于酶的渗透和吸附,真菌菌丝也更易探入内部“破坏”[30]

    • 本研究从黑翅土白蚁肠道分离筛选得到的安拉阿巴德篮状菌刺孢篮状菌黑曲霉和灰孔多年卧孔菌均具有水稻秸秆降解活性,其中黑曲霉和灰孔多年卧孔菌在组合降解水稻秸秆时表现出极强的降解能力,20 d内可降解水稻秸秆中38.27%的干物质、62.59%的纤维素和51.75%的半纤维素,并显著破坏秸秆理化结构,在秸秆生物降解产业化上具有潜在的开发价值。

参考文献 (30)

目录

/

返回文章
返回