-
沙棘Hippophae rhamnoides又名醋柳,是胡颓子科Elaeagnaceae沙棘属Hippophae的落叶性灌木[1]。作为药食同源植物的沙棘不仅在食疗、医药、农林牧渔等领域具有较大的经济价值,在水土保持、恢复生物链及防风固沙中也具有极大的生态价值[2-5]。生长过程中沙棘根部会遭受土壤中放线菌、细菌的侵染形成根瘤。部分菌种会在根瘤中高度富集发挥固氮、促生长、抵御逆境胁迫、防止有害病菌侵染等功能[6-8]。传统的微生物研究方法主要以培养基进行分离纯培养,再进而探究其培养特征、显微结构、生理特性等[9]。而自然界中90%以上的微生物为不可培养微生物,且现有培养基与培养技术不适应未知菌群的生长,或部分菌群生长缓慢、丰度较小等情况都会对菌群的多样性评估产生影响[10]。以二代高通量测序为基础的16S rDNA技术通过对编码原核核糖体小亚基rRNA的DNA序列进行测序,不仅克服了传统方法难以获得不可培养菌株的弊端,还能对样品中的物种相对丰度进行排序,并分析各群组样品中发挥重要作用的优势物种,解析样品中微生物之间的相互作用。该技术对研究沙棘根瘤内生菌微生物多样性与环境关系以及微生物资源的开发利用有重要的理论和现实意义[11-16]。
本研究通过16S rRNA测序技术对沙棘根瘤内生菌进行物种注释、分类学分析、α多样性分析、β多样性分析、组间差异显著性分析,比较高通量测序和纯培养方法的差异与优劣,为发掘具有应用价值的根瘤内生菌资源提供科学依据。
-
使用Usearch软件对clean reads在97.0%的相似度水平下进行聚类,共计获得651个OTU。各样品OTU个数分布较为均匀,样品M1~M6分别为551、583、579、518、593、589个。如图1所示:6组样品中共有的OTU数为417个。M3、M5、M6中分别有4、2、9个特有的OTU,为样品特有OTU,非单个样品特有或所有样品间共有的OTU在图1未做展示。从整体来看,不同地点的各样品间的OTU差异性远小于共性,说明采样方法设计合理。
-
对6组样品测序共获得 810 039对reads,双端reads质控、拼接后共产生617 188条clean reads。其中质量≥20的碱基占总碱基数的比例(Q20)为98.7%,质量≥30的碱基占总碱基数的比例(Q30)为95.4%,表明测序质量较好。从图2可见:各样品稀释性曲线趋向平缓,表明在持续抽样下新物种出现的速率逐渐趋于平缓,此环境中物种数量不会随测序数量的增加而显著增多[34],说明取样合理,能较好体现6组样品中根瘤内生菌的多样性,可以进行数据分析。M5的Shannon和Simpson指数最大(表1),说明物种多样性最高。同理,M4的物种多样性最低。物种丰度方面M5与M6差别不大,均有较高水平。M4根瘤样品的物种丰度最低。样点的Shannon指数平均为4.24,Simpson指数平均为0.70,Ace指数平均为585.79,Chao1指数平均为595.47,样本文库平均覆盖率为99.95%。说明采样地的沙棘根瘤内生菌的物种丰富且多样性较大,各物种分配相对均匀,其微生物物种信息得到了充分体现。
表 1 各组样品的α多样性指数
Table 1. Alpha diversity index for each group of samples
样品 Shannon
指数Simpson
指数Ace
指数Chao1
指数覆盖
率/%M1 2.53 0.47 568.45 598.57 99.95 M2 4.73 0.79 595.09 600.60 99.95 M3 4.28 0.75 600.58 607.45 99.95 M4 2.52 0.44 542.32 543.52 99.94 M5 6.58 0.95 605.66 610.71 99.94 M6 4.82 0.77 602.63 611.97 99.94 平均 4.24 0.70 585.79 595.47 99.95 -
通过传统分离方法从BAP、JA、S、高氏一号培养基中得到纯培养菌株96株。所有菌株均可传代培养,但菌株之间培养周期差异较大,培养周期在1~30 d呈离散型分布。对各菌株进行分子鉴定,共有4门8纲8目13科19属。在门的分类水平分别为变形菌门Proteobacteria、放线菌门Actinobacteria、厚壁菌门Firmicutes和柔膜菌门Tenericutes。在属的分类水平上,96株菌分属于支原体属Mycoptasma 1株、慢生根瘤菌属Bradyrhizobim 6株、土壤杆菌属Agrobacterium 7株、肠杆菌属Enterobacter 6株、小坂菌属Kosakonia 8株、柠檬酸杆菌属Citrobacter 1株、约克氏菌属Yokenella 1株、欧文氏菌属Erwinia 1株、克罗诺杆菌属Cronobacter 2株、泛菌属Pantoea 1株、莫拉菌属Moraxella 1株、贪噬菌属Variovorax 1株、草螺菌属Herbaspirillum 1株、假单胞菌属Pseudomonas 5株、链霉菌属Streptomyces 14株、小单孢菌属Micromonospora 1株、短杆菌属Brevibacterium 6株、葡萄球菌属Straphylococcus 1株和芽孢杆菌属Bacillus 32株。其中,优势门为变形菌门和厚壁菌门,优势属为芽孢杆菌属和链霉菌属。
高通量测序分析发现:6组样品共有14门34纲89目148科314属。将相对丰度大于0.1%的门与相对丰度前10的属进行汇总(图3、表2、表3)发现:在门的分类水平上,6组样品中相对丰度较高的主要为放线菌门和变形菌门,两者相对丰度之和为87.5%~97.1%。其次为拟杆菌门Bacteroidetes、杆菌门Patescibacteria、厚壁菌门、酸杆菌门Acidobacteria。在属的分类水平上,弗兰克氏菌属Frankia占绝对优势,相对丰度为20.12%~74.81%,平均相对丰度为51.49%。其次为根瘤菌属Rhizobium、类固醇杆菌属Steroidobacter、糖单孢菌属Saccharimonadales、肠杆菌属、泛菌属、欧文氏菌属、假黄色单胞菌属Pseudoxanthomonas、鞘脂单胞菌属Sphingomonas、假单胞菌属、固氮弓菌属Azoarcus、伯克氏菌属Burkholderia、芽单胞菌属Blastomonas、聚集杆菌属Congregibacter、拉恩氏菌属Rahnella、鞘氨醇菌属Chitinophaga、独岛杆菌属Dokdonella、普雷沃氏菌属Prevotella、链霉菌属、Microtrichales属。
表 2 沙棘微生物区系门水平的相对分布
Table 2. Relative abundance of microbiota taxa at the level of phylum
分类 6组样品在门水平的相对丰度/% M1 M2 M3 M4 M5 M6 放线菌门 73.55 47.56 51.24 76.09 27.73 57.68 变形菌门 22.38 41.91 41.63 21.01 60.35 29.82 拟杆菌门 0.89 1.42 1.30 0.40 2.18 4.42 杆菌门 0.31 5.66 3.89 0.73 1.42 1.72 厚壁菌门 2.18 2.74 1.30 1.21 2.18 4.42 酸杆菌门 0.15 0.26 0.42 0.18 1.16 0.53 其他 0.54 0.45 0.22 0.38 0.75 0.60 表 3 沙棘微生物区系属水平的相对分布
Table 3. Relative abundance of microbiota taxa at the level of genus
分类 6组样品在属水平的相对丰度/% M1 M2 M3 M4 M5 M6 弗兰克氏菌属 72.62 44.45 49.50 74.81 20.12 47.41 根瘤菌属 1.17 1.97 2.89 2.04 3.13 4.13 类固醇杆菌属 0.73 0.83 1.05 2.20 7.19 2.87 糖单孢菌属 0.28 5.61 3.85 0.71 1.41 1.68 肠杆菌属 6.93 2.19 1.05 0.08 0.22 0.40 泛菌属 0.63 5.19 4.69 0.01 0.05 0.11 欧文氏菌属 0.60 4.66 3.77 0.10 0.18 0.23 假黄色单胞菌属 0.85 1.98 1.67 0.75 3.56 0.68 鞘脂单胞菌属 0.39 1.06 2.10 1.55 2.10 1.64 假单胞菌属 0.51 1.27 5.60 0.03 0.21 0.09 其他 15.29 30.79 23.83 17.72 61.83 40.76 图 3 6组根瘤样品的非加权组平均法(UPGMA)聚类树与物种分布柱状图
Figure 3. UPGMA clustering tree and the species distribution histogram of the six groups of nodule samples are combined drawing
在门、纲、目、科、属的各分类单元中,高通量测序的检测灵敏度(高通量测序/纯培养)依次是纯培养方法的3.50、4.25、11.20、11.38和16.53倍。在门水平上,纯培养菌株中占比较高的厚壁菌门在高通量测序中占比并不高。在属水平上,纯培养菌株中占比较高的芽孢杆菌属和链霉菌属皆在高通量测序中占比很低。该对比结果差异性较大,说明高通量测序在微生物多样性分析中占据优势地位,要优于纯培养方法。同时也说明,沙棘根瘤内共生细菌群落结构更为复杂,群落更为稳定。
Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversity
-
摘要:
目的 沙棘Hippophae rhamnoides根瘤中拥有丰富的微生物资源,探究根瘤内生菌微生物多样性,比较高通量测序与纯培养方法的优劣。 方法 运用16S rRNA高通量测序技术探究沙棘根瘤内生菌相对丰度和多样性差异,并对根瘤内生菌进行分离纯培养,以完成内生菌株库初步构建。 结果 ①传统分离方法得到纯培养菌株96株,共4门8纲8目13科19属。在门分类水平上,相对丰度较高的主要为变形菌门Proteobacteria和厚壁菌门Firmicutes。②高通量测序分析6组样品(M1~M6)中共有14门34纲89目148科314属。在门分类水平上,相对丰度较高的主要为放线菌门Actinobacteria和变形菌门,两者相对丰度之和为87.50%~97.10%。在属的分类水平上,弗兰克氏菌属Frankia占绝对优势,相对丰度为20.12%~74.81%,平均相对丰度为51.49%。③高通量测序与纯培养方法的结果有明显差异,在科和属的分类单元上差异较大。 结论 2种方法都体现沙棘根瘤内生菌的多样性,但纯培养方法仅能够分离到部分内生菌,难以评估物种组成及相对丰度。高通量测序分析能够更为全面地反映多样性信息,且为优化纯培养条件而分离特定物种奠定基础。图3表3参41 -
关键词:
- 根瘤内生菌 /
- 微生物多样性 /
- 16S rDNA高通量测序 /
- 菌株库构建 /
- 沙棘
Abstract:Objective This study is aimed to conduct an investigation of the microbial diversity endophytic bacteria in rhizobia of Hippophae rhamnoides which play an important role in nitrogen fixation and plant growth and research the construction of rhizobia endophytes. Method With the employment of 16S rRNA high-throughput sequencing technology, an exploration was conducted of the relative abundance and diversity of endophytes in Ulange wood rhizobia of Mongolian H. rhamnoides in Dengkou County before the endophytes were isolated and purely cultured to complete the construction of endophytic strains library. Result (1) A total of 96 pure culture strains were obtained by traditional isolation, with 4 phyla, 8 classes, 8 orders, 13 families, and 19 genera and Proteobacteria and Firmicutes are of relatively higher relative abundances in terms of phyla classification. (2) With an analysis of 6 groups of samples (M1−M6) consisting of 14 phyla, 34 classes, 89 orders, 148 families, and 314 genera by high-throughput sequencing, Actinomycota and Proteobacteria have higher relative abundance, and the sum of the relative abundance of the two is between 87.50%−97.10% in terms of phylum classification. As for the taxonomic level of the genus, the genus Frankia occupies an absolute advantage with the relative abundance being between 20.12% and 74.81%, and the average relative abundance being 51.49%. With M5 having the largest Shannon and Simpson indexes and M4 having the lowest species diversity, both M5 and M6 have higher levels of species abundance whereas M4 species has the lowest abundance. (3) The results of high-throughput sequencing and pure culture methods are significantly different, especially in the taxa of families and genera. Conclusion Both methods reflected the diversity of endophytes in sea buckthorn rhizobia, but the pure culture method could only isolate some endophytes, and it was difficult to evaluate the species composition and relative abundance. Also, high-throughput sequencing analysis could reflect the diversity better and lay the foundation for optimizing pure culture conditions for the isolation of specific species. [Ch, 3 fig. 3 tab. 41 ref.] -
表 1 各组样品的α多样性指数
Table 1. Alpha diversity index for each group of samples
样品 Shannon
指数Simpson
指数Ace
指数Chao1
指数覆盖
率/%M1 2.53 0.47 568.45 598.57 99.95 M2 4.73 0.79 595.09 600.60 99.95 M3 4.28 0.75 600.58 607.45 99.95 M4 2.52 0.44 542.32 543.52 99.94 M5 6.58 0.95 605.66 610.71 99.94 M6 4.82 0.77 602.63 611.97 99.94 平均 4.24 0.70 585.79 595.47 99.95 表 2 沙棘微生物区系门水平的相对分布
Table 2. Relative abundance of microbiota taxa at the level of phylum
分类 6组样品在门水平的相对丰度/% M1 M2 M3 M4 M5 M6 放线菌门 73.55 47.56 51.24 76.09 27.73 57.68 变形菌门 22.38 41.91 41.63 21.01 60.35 29.82 拟杆菌门 0.89 1.42 1.30 0.40 2.18 4.42 杆菌门 0.31 5.66 3.89 0.73 1.42 1.72 厚壁菌门 2.18 2.74 1.30 1.21 2.18 4.42 酸杆菌门 0.15 0.26 0.42 0.18 1.16 0.53 其他 0.54 0.45 0.22 0.38 0.75 0.60 表 3 沙棘微生物区系属水平的相对分布
Table 3. Relative abundance of microbiota taxa at the level of genus
分类 6组样品在属水平的相对丰度/% M1 M2 M3 M4 M5 M6 弗兰克氏菌属 72.62 44.45 49.50 74.81 20.12 47.41 根瘤菌属 1.17 1.97 2.89 2.04 3.13 4.13 类固醇杆菌属 0.73 0.83 1.05 2.20 7.19 2.87 糖单孢菌属 0.28 5.61 3.85 0.71 1.41 1.68 肠杆菌属 6.93 2.19 1.05 0.08 0.22 0.40 泛菌属 0.63 5.19 4.69 0.01 0.05 0.11 欧文氏菌属 0.60 4.66 3.77 0.10 0.18 0.23 假黄色单胞菌属 0.85 1.98 1.67 0.75 3.56 0.68 鞘脂单胞菌属 0.39 1.06 2.10 1.55 2.10 1.64 假单胞菌属 0.51 1.27 5.60 0.03 0.21 0.09 其他 15.29 30.79 23.83 17.72 61.83 40.76 -
[1] 兰士波. 中国沙棘良种选育及遗传改良研究进展与展望[J]. 经济林研究, 2011, 29(3): 102 − 106. LAN Shibo. Research progress and prospects of selection and breeding of superior Chinese species in Hippophae and its genetic improvement [J]. Non-wood For Res, 2011, 29(3): 102 − 106. [2] LIU Yong, QIU Yuping, ZHANG Ling, et al. Dormancy breaking and storage behavior of Garcinia cowa Roxb. (Guttiferae) seeds: implications for ecological function and germplasm conservation [J]. J Integrative Plant Biol Formerly Acta Bot Sin, 2005, 47(1): 38 − 49. [3] VIBHA B, NEELAM G. Importance of exploration of microbial biodiversity [J]. ISCA J Biol Sci, 2012, 1(3): 78 − 83. [4] BERNER D, VIERNSTEIN H. Effect of protective agents on the viability of Lactococcus lactis subjected to freeze-thawing and freeze-drying [J]. Sci Pharm, 2006, 74(3): 137 − 149. [5] BOUMAHDI M, MARY P, HORNEZ J P. Influence of growth phases and desiccation on the degrees of unsaturation of fatty acids and the survival rates of rhizobia [J]. J Appl Microbiol, 2010, 87(4): 611 − 619. [6] CHIAN R C, QUINN P. Fertility Cryopreservation: Cryopreservation of Sperm and Testicular Tissue[M]. Cambridge: Cambridge University Press, 2010: 160 − 162. [7] ZHOU Yiqin, DROUIN P, LAFRENIÈRE C. Effects on microbial diversity of fermentation temperature (10 ℃ and 20 ℃), long-term storage (5 ℃), and subsequent warming on corn silage [J]. Asian-Australas J Anim Sci, 2019, 32(10): 1528 − 1539. [8] SMIRNOVA D V, ZALOMOVA L V, ZAGAINOVA A V, et al. Cryopreservation of the human gut microbiota: current state and perspectives [J]. Int J Med Microbiol, 2019, 309(5): 259 − 269. [9] 刘泉成. 玉米根际微生物群落特征分析及生防菌筛选[D]. 北京: 中国农业科学院, 2018. LIU Quancheng. Analyzing Composition of Bacterial Community and Screening of Biocontrol Bacteria Strains in Maize Rhizosphere [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. [10] 许来鹏, 万鲜花, 孙向丽, 等. 畜禽粪肥和秸秆还田对玉米根际微生物群落结构的影响[J]. 生物技术通报, 2020, 36(9): 142 − 151. XU Laipeng, WAN Xianhua, SUN Xiangli, et al. Effects of livestock manure and straw returning to field on microbial community structure around maize rhizosphere [J]. Biotechnol Bull, 2020, 36(9): 142 − 151. [11] 谢宪, 梁军, 张铭, 等. 赤松枯梢病叶内生真菌多样性研究[J]. 生物技术通报, 2020, 36(2): 119 − 125. XIE Xian, LIANG Jun, ZHANG Ming, et al. Endophytic fungi diversity in the needles of Pinus densiflora with Sphaeropsis sapinea [J]. Biotechnol Bull, 2020, 36(2): 119 − 125. [12] 马慧媛. 微生物菌剂施用对设施茄子根际土壤养分和细菌群落多样性的影响[J]. 微生物学通报, 2020, 47(1): 140 − 150. MA Huiyuan. Effects of microbial agents on nutrient and bacterial community diversity in rhizosphere soil of eggplant cultivated in facilities [J]. Microbiol China, 2020, 47(1): 140 − 150. [13] 牛世全, 龙洋, 李海云, 等. 应用Illumina MiSeq 高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J]. 微生物学通报, 2017, 44(9): 63 − 74. NIU Shiquan, LONG Yang, LI Haiyun, et al. Microbial diversity in saline alkali soil from Hexi Corridor analyzed by Illumina MiSeq high-throughput sequencing system [J]. Microbiol China, 2017, 44(9): 63 − 74. [14] 邓振山, 商荣芳, 陈凯凯, 等. 陕北地区提高石油采收率菌株筛选及其降解性能评价[J]. 生物技术通报, 2019, 35(2): 73 − 79. DENG Zhenshan, SHANG Rongfang, CHEN Kaikai, et al. Screening of strains for enhancing oil recovery in Northern Shaanxi and evaluation of their degradabilities [J]. Biotechnol Bull, 2019, 35(2): 73 − 79. [15] 杨溢, 黄美, 张琛, 等. 16s rRNA 高通量测序技术在人类医学中的应用进展[J]. 亚洲临床医学杂志, 2019, 1(1): 16 − 17. YANG Yi, HUANG Mei, ZHANG Chen, et al. Application progress of 16s rRNA high-throughput sequencing technology in human medicine [J]. Asian J Clin Med, 2019, 1(1): 16 − 17. [16] 王志伟, 纪燕玲, 陈永敢. 植物内生菌研究及其科学意义[J]. 微生物学通报, 2015, 42(2): 349 − 363. WANG Zhiwei, JI Yanling, CHEN Yonggan. Studies and biological significances of plant endophytes [J]. Microbiol China, 2015, 42(2): 349 − 363. [17] 徐瑞瑞. 沙棘弗兰克氏和非弗兰克氏放线菌的分离、培养及分子鉴定[D]. 北京: 中国林业科学研究院, 2011. XU Ruirui. The Isolation, Cuture and Molecular Identification of Fraknkia and Non-Frankia Sctionayetec form Hipooha rehanmde Root Nodules [D]. Beijing: Chinese Academy of Forestry, 2011. [18] 李志真. 福建弗兰克氏菌Frankia研究[D] . 福州: 福建农林大学, 2002. LI Zhizhen. The Studies on Actinomycetes-Frankia in Fujian [D]. Fuzhou: Fujian Agriculture and Forestry University, 2002. [19] 刁治民, 陈克龙, 王文颖. 固氮微生物学[M]. 北京: 科学出版社, 2014: 169 − 188. DIAO Zhimin, CHEN Kelong, WANG Wenying. Nitrogen Fixation Microbiology[M]. Beijing: Science Press, 2014: 169 − 188. [20] 李利坤. 沙棘根瘤菌的分离鉴定及根瘤菌对植株生长发育的影响[D]. 长春: 吉林农业大学, 2018. LI Likun. Isolation and Identification of Rhizobium from Seabuckthorn and Effects of Rhizobium on the Growth and Development of Plants [D]. Changchun: Jilin Agricultural University, 2018. [21] YU Jie, ZHOU Xiaofeng, YANG Suijuan, et al. Design and application of specific 16S rDNA-targeted primers for assessing endophytic diversity in Dendrobium officinale using nested PCR-DGGE [J]. Appl Microbiol Biotechnol, 2013, 97(22): 9825 − 9836. [22] 周小倩. 黑龙江省不同经度耕作生态系统土壤微生物群落结构研究[D]. 哈尔滨: 哈尔滨师范大学, 2016. ZHOU Xiaoqian. Study on the Microbial Community Structure in Farming Ecosystem in Different Longitudes of Heilongjiang Province [D]. Harbin: Harbin Normal University, 2016. [23] 阮继生, 黄英. 放线菌快速鉴定与系统分类[M]. 北京: 科学出版社, 2011: 60 − 62. RUAN Jisheng, HUANG Ying. Rapid Identification and Systematic Classification of Actinomycetes[M]. Beijing: Science Press, 2011: 60 − 62. [24] 董秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001: 353 − 390. DONG Xiuzhu, CAI Miaoying. The Identification Manual of Common Bacteria System[M]. Beijing: Science Press, 2001: 353 − 390. [25] 李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008: 146 − 201. LI Zhengao, LUO Yongming, TENG Ying. Soil and Environmental Microbiology Research Method[M]. Beijing: Science Press, 2008: 146 − 201. [26] 刘欣, 李志英, 刘瑞瑞, 等. 大豆不同生育期根际土壤细菌群落结构的变化[J]. 广西植物, 2018, 38(10): 107 − 114. LIU Xin, LI Zhiying, LIU Ruirui, et al. Changes of bacterial flora structure in rhizosphere soil of soybean at different growth stages [J]. Guihaia, 2018, 38(10): 107 − 114. [27] 阚望, 李成云, 许姗姗, 等. 西双版纳热带雨林植物叶际细菌群落研究[J]. 西南农业学报, 2020, 33(3): 631 − 636. KAN Wang, LI Chengyun, XU Shanshan, et al. Plant phyllosphere bacteria community in Xishuangbanna tropic rainforest in China [J]. Southwest China J Agric Sci, 2020, 33(3): 631 − 636. [28] BOLGER A M, LOHSE M, USADEL B, et al. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114 − 2120. [29] MAGO T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies [J]. Bioinformatics, 2011, 27(21): 2957 − 2963. [30] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection [J]. Bioinformatics, 2011, 27(16): 2194 − 2200. [31] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Nat Methods, 2013, 10(10): 996 − 998. [32] BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing [J]. Nat Methods, 2013, 10(1): 57 − 59. [33] 李怡, 余林, 况小宝. 未覆盖雷竹林土壤细菌群落剖面分布特征[J]. 南方林业科学, 2019, 47(4): 1 − 5. LI Yi, YU Lin, KUANG Xiaobao. The profile distribution characteristics of soil bacterial community in uncovered Phyllostachys praecox forest [J]. Southern China For Sci, 2019, 47(4): 1 − 5. [34] WANG Yu, SHENG Huafang, HE Yan, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags [J]. Appl Environ Microbiol, 2012, 78(23): 64 − 82. [35] 张爱梅, 韩雪英, 王嘉, 等. 马衔山中国沙棘根瘤内共生细菌多样性研究[J]. 生态学报, 2019, 39(1): 298 − 305. ZHANG Aimei, HAN Xueying, WANG Jia, et al. Diversity of endophytic bacteria in root nodules of Hippophae rhamnoides in the Maxian Mountains [J]. Acta Ecol Sin, 2019, 39(1): 298 − 305. [36] 刘志强, 张利平. 沙棘和沙枣根瘤中固氮放线菌物种多样性研究[J]. 安徽农业科学, 2010, 38(11): 33 − 36. LIU Zhiqiang, ZHANG Liping. Study on species diversity of nitrogen-fixing actinomycetes in Hippophae and Elaeagnus root nodules [J]. J Anhui Agric Sci, 2010, 38(11): 33 − 36. [37] 张小民, 王岚, 林美珍, 等. 论沙棘根系与功能Ⅱ——Frankia菌侵染和结瘤[J]. 沙棘, 2006, 19(1): 4 − 14. ZHANG Xiaomin, WANG Lan, LIN Meizhen, et al. On the root system and function of seabuckthorn Ⅱ: Frankia infection and nodulation [J]. Seabuckthorn Hippophae, 2006, 19(1): 4 − 14. [38] FINKEL O M, SALAS-GONZÁLEZ I, CASTRILLO G, et al. A single bacterial genus maintains root growth in a complex microbiome [J]. Nature, 2020, 587: 103 − 108. [39] TRUJILLO M E, RIESCO R, BENITO P, et al. Endophytic actinobacteria and the interaction of Micromonospora and nitrogen fixing plants[J/OL]. Front Microbiol, 2015, 6: 1341[2021-01-12]. doi: 10.3389/fmicb.2015.01341. [40] CARRO L, PUJIC P, TRUJILLO M E, et al. Micromonospora is a normal occupant of actinorhizal nodules [J]. J Biosci, 2013, 38(4): 685 − 693. [41] HOCHER V, ALLOISIO N, BOGUSZ D, et al. Early signaling in actinorhizal symbioses [J]. Plant Signaling Behav, 2011, 6(9): 1377 − 1379. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210246