Volume 41 Issue 5
Sep.  2024
Turn off MathJax
Article Contents

ZHU Hongsheng, ZHAO Jiongchang, CHI Jinming, WANG Zihan, WANG Liping, WANG Zhengze, YU Yang. Soil moisture characteristics under level bench and vegetation in loess area of western Shanxi Province[J]. Journal of Zhejiang A&F University, 2024, 41(5): 996-1004. doi: 10.11833/j.issn.2095-0756.20240114
Citation: ZHU Hongsheng, ZHAO Jiongchang, CHI Jinming, WANG Zihan, WANG Liping, WANG Zhengze, YU Yang. Soil moisture characteristics under level bench and vegetation in loess area of western Shanxi Province[J]. Journal of Zhejiang A&F University, 2024, 41(5): 996-1004. doi: 10.11833/j.issn.2095-0756.20240114

Soil moisture characteristics under level bench and vegetation in loess area of western Shanxi Province

doi: 10.11833/j.issn.2095-0756.20240114
  • Received Date: 2024-01-10
  • Accepted Date: 2024-06-06
  • Rev Recd Date: 2024-06-02
  • Available Online: 2024-09-25
  • Publish Date: 2024-09-25
  •   Objective  This study, with an exploration of the effects of typical afforestation tree species and level bench measure on soil moisture dynamics in 0−180 cm soil layer in the loess region of western Shanxi Province, is aimed to provide a reference for vegetation restoration and comprehensive watershed management.   Method  Taking the level bench , which is a typical engineering measure and the main afforestation tree species (Robinia pseudoacacia and Platycladus orientalis) in Caijiachuan watershed in the loess plateau region of western Shanxi as the research objects, the soil moisture was monitored in the growing season of 2019 (May − September), with a synchronous observation made of the soil moisture of natural slopes of R. pseudoacacia and P. orientalis using the paired experimental design before an analysis was conducted of the soil moisture characteristics under the comprehensive influence of different vegetation types and level bench and the response process to rainfall events and the effects of typical engineering measures on soil moisture of different vegetation types were evaluated.  Result  The changes of soil moisture before and after soil preparation with different vegetation types and level bench were closely related to the changes of rainfall and the average soil moisture decreased from level bench-P. orientalis (18.68%), slope-P. orientalis (16.19%), level bench-R. pseudoacacia (16.10%) to slope-R. pseudoacacia (15.42%). Compared with natural slope, level bench could increase the soil moisture of P. orientalis and R. pseudoacacia by 15.38% and 4.41% respectively and according to the vertical variation characteristics of soil moisture, level bench could significantly increase the depth of active layer and secondary active layer of soil moisture: the depth of horizontal active layer and secondary active layer of P. orientalis ranged from 0 to 80 cm, which was 33% higher than that of P. orientalis slope while the depth of horizontal active layer and secondary active layer of R. pseudoacacia ranged from 0 to 140 cm, which was 40% higher than that of R. pseudoacacia slope.   Conclusion  The dynamic change of soil water content is closely related to rainfall, engineering measures and vegetation. Level bench is an effective engineering measure to carry out ecological restoration in small watershed of loess plateau, and the lifting effect of P. orientalis level bench is better than that of R. pseudoacacia level bench. [Ch, 3 fig. 3 tab. 37 ref.]
  • [1] YANG Juan, LIU Zhanjun, REN Zhenqiang, NA Heya, ZHAO Yaru, WU Mengyao, CHEN Lin, LI Xuebin, ZHOU Jinxing, WAN Long, PANG Danbo.  Characteristics of soil physicochemical properties and enzyme activities in different vegetation types on the western slope of Helan Mountain . Journal of Zhejiang A&F University, 2024, 41(4): 787-796. doi: 10.11833/j.issn.2095-0756.20230485
    [2] HUANG Jinghan, BI Huaxing, ZHAO Danyang, WANG Ning, LIU Zehui, ZHANG Rong.  Vertical distribution of soil moisture in typical plantation in the loess region of western Shanxi Province . Journal of Zhejiang A&F University, 2024, 41(2): 387-395. doi: 10.11833/j.issn.2095-0756.20230228
    [3] YUN Huiya, BI Huaxing, JIAO Zhenhuan, WANG Ning, CUI Yanhong, ZHAO Danyang, WANG Shanshan, LAN Daoyun, LIU Zehui.  Composition and diversity of understory plants under different stand types and densities in loess region of western Shanxi Province . Journal of Zhejiang A&F University, 2023, 40(3): 569-578. doi: 10.11833/j.issn.2095-0756.20220433
    [4] BAI Hui, JIANG Haiyan, CONG Lin, SHI Dongming, LIN Renjie, DI Jialin.  Diversity of macrofungi in different broad-leaved forests in Gaogestai Hanwula Nature Reserve . Journal of Zhejiang A&F University, 2022, 39(4): 765-774. doi: 10.11833/j.issn.2095-0756.20210661
    [5] ZHANG Rong, BI Huaxing, JIAO Zhenhuan, WANG Ning, ZHAO Danyang, YUN Huiya, HUANG Jinghan.  Diurnal and nocturnal changes in stem sap flow of Robinia pseudoacacia during growing season and its response to meteorological factors . Journal of Zhejiang A&F University, 2022, 39(6): 1238-1246. doi: 10.11833/j.issn.2095-0756.20220159
    [6] SUN Zhanwei, MA Lan, MEI Xuemei, LIU Jingjing, WANG Fuxing, ZHANG Jinge, YAN Lin.  Characteristics of soil moisture and its main influencing factors in different hydrological years in western Shanxi loess region . Journal of Zhejiang A&F University, 2021, 38(1): 10-20. doi: 10.11833/j.issn.2095-0756.20200260
    [7] LI Hua, CAI Jianjun, WU Cuihua, ZHANG Lili, YUAN An, KANG Yongxiang.  Distribution characteristics and influencing factors of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve . Journal of Zhejiang A&F University, 2021, 38(3): 485-493. doi: 10.11833/j.issn.2095-0756.20200509
    [8] GUO Yichang, ZHUANG Shunyao, HU Yuyan, GUI Renyi.  Soil oxygen content of Phyllostachys violascens with pipe-buried aeration . Journal of Zhejiang A&F University, 2020, 37(1): 69-75. doi: 10.11833/j.issn.2095-0756.2020.01.009
    [9] XU Junli, ZHANG Guilian, ZHANG Xijin, GAO Zhiwen, ZHONG Qicheng, ZHANG Yaping, SONG Kun, DA Liangjun.  Soil physical and chemical properties and effects of plant community characteristics in forest plantations of Shanghai City . Journal of Zhejiang A&F University, 2018, 35(6): 1017-1026. doi: 10.11833/j.issn.2095-0756.2018.06.004
    [10] CAI Zhoufei, CHEN Yaqi, XU Xinlu, WANG Xiaodong, WANG Junyu, ZHANG Rumin, GAO Yan.  Changes of volatile organic compounds released during flowering in four Osmanthus fragrans cultivar groups . Journal of Zhejiang A&F University, 2017, 34(4): 608-619. doi: 10.11833/j.issn.2095-0756.2017.04.006
    [11] WANG Chunlin, ZHANG Jinchi, ZHUANG Yilin, ZHOU Jiao, HAN Cheng, LIU Xin, ZHUANG Jiayao.  Surface volume soil water content in grasslands versus bamboo stands in a Nanjing suburb . Journal of Zhejiang A&F University, 2014, 31(6): 911-918. doi: 10.11833/j.issn.2095-0756.2014.06.013
    [12] SHEN Nian-hua, LI Chuan-lei, WANG Xiao-de.  Rock vegetation types of Danxia landform in Zhejiang Province . Journal of Zhejiang A&F University, 2011, 28(4): 614-618. doi: 10.11833/j.issn.2095-0756.2011.04.015
    [13] WANG Rong-ping, LI Shu-yi, WU Tao, QIN Xing-hua, LIAO Xin-rong, LAN Pei-ling.  Seasonal variation of leaf mineral nutrient concentrations in seedless wampee (Clausena lansium ‘Yunan Seedless’) . Journal of Zhejiang A&F University, 2008, 25(2): 200-205.
    [14] JIN Ya-qin, HUANG Xue-fang, LI Dong-lin, XIANG Qi-bai.  Variation of endogenous polyamines concentrations in Lycoris chinensis bulbs during reproductive period . Journal of Zhejiang A&F University, 2007, 24(4): 419-423.
    [15] LONG Wu, YANG Yun-hua, WANG Ke-qin, LI Jian-zeng, LI Bao-rong, LI Yun-jiao.  Moisture-holding capacity of different plant cover types in the Jianshan River drainage area . Journal of Zhejiang A&F University, 2007, 24(2): 135-139.
    [16] WANG Rong, PAN Wen-bin.  Topographic differences for vegetation types in Wuyishan National Nature Reserve, Fujian Province . Journal of Zhejiang A&F University, 2007, 24(6): 731-735.
    [17] LI Dong-lin, LI Rong-jin, WANG Bao-song, WANG Xi-hua.  Analysis of vegetation types and woody plants flora in Yushan of Changshu . Journal of Zhejiang A&F University, 2006, 23(1): 46-51.
    [18] LI Gen-you, CHEN Zheng-hai, LIU An-xing, SUN Meng-jun, YING Shun-dong.  Classification system on wetland vegetation in Zhejiang Province and main vegetation types and their distribution characteristics . Journal of Zhejiang A&F University, 2002, 19(4): 356-362.
    [19] XU Feng-lan, WEI Tan, LIU Ai-qing.  Studies on physical characters of soil in mixed forest of Chinese fir and paulownia . Journal of Zhejiang A&F University, 2000, 17(3): 285-288.
    [20] GAO Zhi-hui, CHEN Shun-wei, JIANG Miao-ding, KANG Zhi-xiong, SHI Zhong-li.  Water and soil conservation effectiveness of different types of vegetation on subtropical rocky coast . Journal of Zhejiang A&F University, 1999, 16(4): 380-386.
  • [1]
    LIU Yu, GAO Guangyao, WANG Di, et al. Water use characteristics of Robinia pseudoacacia plantations under different thinning intensities in the loess hilly region [J]. Acta Ecologica Sinica, 2023, 43(7): 2845 − 2855.
    [2]
    SUN Zhanwei, MA Lan, MEI Xuemei, et al. Characteristics of soil moisture and its main influencing factors in different hydrological years in western Shanxi loess region [J]. Journal of Zhejiang A&F University, 2021, 38(1): 10 − 20.
    [3]
    YIN Dichi, WANG Li, CAI Guojun, et al. Soil moisture characteristics and stability of different vegetation types in semi-arid loess hilly region [J]. Bulletin of Soil and Water Conservation, 2020, 40(1): 65 − 71.
    [4]
    LIU Youyan, LIU Xingyuan, ZHANG Bo, et al. Evaluation of soil and water conservation function of artificial shrub-grassland ecosystems in hilly region of the Loess Plateau [J]. Journal of Soil and Water Conservation, 2020, 34(3): 84 − 90, 97.
    [5]
    AN Wenming, HAN Xiaoyang, LI Zongshan, et al. Effects of different vegetation restoration modes on soil moisture slope changes in the Loess Plateau, China [J]. Acta Ecologica Sinica, 2018, 38(13): 4852 − 4860.
    [6]
    LIU Can. Research on the Effect of Vegetation Restoration on Soil Moisture in the Loess Plateau [D]. Shijiazhuang: Hebei University of Geology, 2022.
    [7]
    GUO Qingping, ZHU Qingke. Response of deep soil moisture to different vegetation types in the Loess Plateau of northern Shannxi, China [J/OL]. Scientific Reports, 2021, 11(1): 15098[2023-12-10]. doi:10.1038/s41598-021-94758-5.
    [8]
    SU Bingqian, SU Zhuoxia, SHANGGUAN Zhouping. Trade-off analyses of plant biomass and soil moisture relations on the Loess Plateau [J/OL]. Catena, 2021, 197: 1049461[2023-12-10]. doi: 10.1016/j.catena.2020.104946.
    [9]
    YANG Yang, ZHU Yuanjun, AN Shaoshan. Review ecohydrological processes in the Loess Plateau [J]. Acta Ecologica Sinca, 2018, 38(11): 4052 − 4063.
    [10]
    DU Kang, ZHANG Beiying. Characteristics of soil moisture variation in different types of land uses in the Loess Hilly Region [J]. Research of Soil and Water Conservation, 2020, 27(6): 72 − 76.
    [11]
    PUYANG Xuehua, WANG Yueling, ZHAO Zhijie, et al. Coupling relationship between vegetation and soil in different vegetation restoration modes in loess area of northern Shaanxi [J]. Acta Prataculturae Sinica, 2021, 30(5): 13 − 24.
    [12]
    WANG Xianzhi, ZHAO Xining, GAO Xiaodong, et al. Simulation of soil moisture and water productivity of apple orchards on the Loess Plateau, Northwest China [J]. Chinese Journal of Applied Ecology, 2021, 32(1): 201 − 210.
    [13]
    THOMPSON S E, KATUL G G, PORPORATO A. Role of microtopography in rainfall-runoff partitioning: an analysis using idealized geometry [J/OL]. Water Resources Research, 2020, 46(7): W07520 [2023-12-10]. doi: 10.1029/2009WR008835.
    [14]
    YANG Yashuang, WANG Jinman, WAN Depeng. Micro-topography modification and its effects on the conservation of soil and water in artificially piled landform area: a review [J]. Chinese Journal of Ecology, 2018, 37(2): 569 − 579.
    [15]
    LI Ping, ZHU Qingke, XIE Jing, et al. Soil moisture and nutrient level in artificial Pinus tabulaeformis forest by level terracing in semiarid Loess Plateau [J]. Bulletin of Soil and Water Conservation, 2012, 32(1): 60 − 65.
    [16]
    LIU Le, SUN Hongyi, ZHANG Jianxin, et al. Effect of several engineering measures on vegetation coverage on steep slope in the loess region [J]. Arid Zone Research, 2019, 36(4): 1041 − 1048.
    [17]
    TIAN Zhuo, ZHANG Shuaipu, XU Qinxue. Spatial distribution characteristics of surface soil moisture content in the rocky desertification slope under different land preparation measures [J]. Journal of Soil and Water Conservation, 2024, 38(4): 335 − 345.
    [18]
    DONG Li, WANG Keqin, CHEN Zhizhong. Benefit analysis of horizontal terrace land preparation on slopes in Yuanmou Dry Heat River Valley [J]. China Soil and Water Conservation, 2011(10): 7 − 9.
    [19]
    DING Wenbin, WANG Fei. Effects of vegetation construction on soil moisture in the Loess Plateau [J]. Acta Ecologica Sinca, 2022, 42(13): 5531 − 5542.
    [20]
    SU Tingting, HAN Bingfang, MA Hongbin, et al. Effects of contour trenches engineering measures on soil moisture dynamics and balance of typical steppe in loess hilly region [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 125 − 134.
    [21]
    LI Jun, BI Huaxing, LI Xiaoyin, et al. Application of sequential clustering method in vertical dividing of soil moisture profiles [J]. Journal of Beijing Forestry University, 2007, 29(1): 98 − 101.
    [22]
    WANG Xinzeng, JIAO Feng. Partition of soil moisture profiles based on sequential clustering method [J]. Journal of Northwest A&F University (Natural Science Edition), 2011, 39(2): 191 − 196, 201.
    [23]
    ZHAI Bochao, ZHU Yan, SHEN Xiaojuan, et al. Spatiotemporal variation of soil moisture and the responses to rainfall events in two typical mature forest stands in the loess hilly region [J]. Research of Soil and Water Conservation, 2024, 31(4): 170 − 178.
    [24]
    QIANG Fangfang, WEI Tianxing, LIU Wei. Relationship between soil moisture dynamics and vegetation community in the loess area of western Shanxi Province [J]. Bulletin of Botanical Research, 2019, 39(1): 61 − 68.
    [25]
    YU Yang, WEI Wei, CHEN Liding, et al. Coupling effects of different land preparation and vegetation on soil moisture characteristics in a semi-arid loess hilly region [J]. Acta Ecologica Sinca, 2016, 36(11): 3441 − 3449.
    [26]
    LI Yuting. Research on the Characteristics and Soil Moisture Dynamics of Typical Plantation Forests in Loess Area of Western Shanxi Province [D]. Beijing: Beijing Forestry University, 2021.
    [27]
    WEI Tong, TAN Junli, MA Zhongsheng. A review of researches on effect of soil and water conservation measures on soil moisture in the Loess Plateau [J]. Water Saving Irrigation, 2018(10): 97 − 99, 103.
    [28]
    WANG Yue, WANG Jinman, SHI Wenting, et al. Influence of rainfall intensity and microtopography on soil moisture on slopes of open pit coal mine dumps [J]. Journal of Soil and Water Conservation, 2022, 36(6): 241 − 249.
    [29]
    CHENG Liang, JIAO Xiong, DI Hanyue, et al. Characteristics of spatial and temporal soil moisture distribution on slopes with different land preparation measures [J]. Acta Pedologica Sinica, 2021, 58(6): 1423 − 1435.
    [30]
    BATES J D, SVEJCAR T S, MILLER R F. Litter decomposition in cut and uncut western juniper woodlands [J]. Journal of Arid Environments, 2007, 70(2): 222 − 236.
    [31]
    ZHANG Jianan, ZHANG Jianjun, ZHANG Haibo, et al. Evaluation of water-holding capacity of typical forest stands in loess area of western Shanxi Province [J]. Journal of Beijing Forestry University, 2019, 41(8): 105 − 114.
    [32]
    MA Jing, SONG Weifeng. Study on dynamic change of soil moisture in water source area of Yuanyang Terrace [J]. Ecological Science, 2016, 35(2): 33 − 43.
    [33]
    HUANG Jinghan, BI Huaxing, ZHAO Danyang, et al. Vertical distribution of soil moisture in typical plantation in the loess region of western Shanxi Province [J]. Journal of Zhejiang A&F University, 2024, 41(2): 387 − 395.
    [34]
    ZHANG Bo, ZHANG Jianjun, LI Yitao, et al. Vertical stratification of soil moisture profile in acacia woodland in loess area [J]. China Soil and Water Conservation Science, 2010, 8(4): 39 − 44.
    [35]
    ZHAO Danyang, BI Huaxing, HOU Guirong, et al. Characteristics of soil moisture changes in typical forested land in loess area of western Shanxi Province [J]. Journal of Soil and Water Conservation, 2021, 35(1): 181 − 187.
    [36]
    YU Yang, WEI Wei, CHEN Liding, et al. Land preparation and vegetation type jointly determine soil conditions after long-term land stabilization measures in a typical hilly catchment, Loess Plateau of China [J]. Jounral of Soils and Sediments, 2017, 17: 144 − 156.
    [37]
    GU Liping, PEI Yanhui, ZHENG Ke, et al. Influence of different site preparation on soil water content in dry-hot valley of Yuanmou County [J]. Journal of West China Forestry Science, 2017, 46(6): 71 − 76.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(3)

Article views(207) PDF downloads(16) Cited by()

Related
Proportional views

Soil moisture characteristics under level bench and vegetation in loess area of western Shanxi Province

doi: 10.11833/j.issn.2095-0756.20240114

Abstract:   Objective  This study, with an exploration of the effects of typical afforestation tree species and level bench measure on soil moisture dynamics in 0−180 cm soil layer in the loess region of western Shanxi Province, is aimed to provide a reference for vegetation restoration and comprehensive watershed management.   Method  Taking the level bench , which is a typical engineering measure and the main afforestation tree species (Robinia pseudoacacia and Platycladus orientalis) in Caijiachuan watershed in the loess plateau region of western Shanxi as the research objects, the soil moisture was monitored in the growing season of 2019 (May − September), with a synchronous observation made of the soil moisture of natural slopes of R. pseudoacacia and P. orientalis using the paired experimental design before an analysis was conducted of the soil moisture characteristics under the comprehensive influence of different vegetation types and level bench and the response process to rainfall events and the effects of typical engineering measures on soil moisture of different vegetation types were evaluated.  Result  The changes of soil moisture before and after soil preparation with different vegetation types and level bench were closely related to the changes of rainfall and the average soil moisture decreased from level bench-P. orientalis (18.68%), slope-P. orientalis (16.19%), level bench-R. pseudoacacia (16.10%) to slope-R. pseudoacacia (15.42%). Compared with natural slope, level bench could increase the soil moisture of P. orientalis and R. pseudoacacia by 15.38% and 4.41% respectively and according to the vertical variation characteristics of soil moisture, level bench could significantly increase the depth of active layer and secondary active layer of soil moisture: the depth of horizontal active layer and secondary active layer of P. orientalis ranged from 0 to 80 cm, which was 33% higher than that of P. orientalis slope while the depth of horizontal active layer and secondary active layer of R. pseudoacacia ranged from 0 to 140 cm, which was 40% higher than that of R. pseudoacacia slope.   Conclusion  The dynamic change of soil water content is closely related to rainfall, engineering measures and vegetation. Level bench is an effective engineering measure to carry out ecological restoration in small watershed of loess plateau, and the lifting effect of P. orientalis level bench is better than that of R. pseudoacacia level bench. [Ch, 3 fig. 3 tab. 37 ref.]

ZHU Hongsheng, ZHAO Jiongchang, CHI Jinming, WANG Zihan, WANG Liping, WANG Zhengze, YU Yang. Soil moisture characteristics under level bench and vegetation in loess area of western Shanxi Province[J]. Journal of Zhejiang A&F University, 2024, 41(5): 996-1004. doi: 10.11833/j.issn.2095-0756.20240114
Citation: ZHU Hongsheng, ZHAO Jiongchang, CHI Jinming, WANG Zihan, WANG Liping, WANG Zhengze, YU Yang. Soil moisture characteristics under level bench and vegetation in loess area of western Shanxi Province[J]. Journal of Zhejiang A&F University, 2024, 41(5): 996-1004. doi: 10.11833/j.issn.2095-0756.20240114
  • 土壤水分是连接土壤-植被-大气连续体中大气降水、地表水、土壤水和地下水相互转化的重要环节[12]。在降雨、植被类型、整地方式等诸多因素的影响下,土壤水分可能存在时空差异[3]。黄土高原是生态脆弱和水土流失严重的地区,为此开展了大规模的退耕还林还草工程[45]。2000—2020年期间,黄土高原耕地、林地、未利用土地变化幅度明显,耕地面积减少了12 918 km2,林地面积增加了3 232 km2,灌木面积增加了555 km2,未利用地面积减少了1 982 km2[6]。但黄土高原降水少、蒸发强,不合理的造林方式消耗了大量的土壤水分[78],林地土壤水分亏缺愈发严重[910],土壤干层的情况不断加深[1112],土壤水分成为了限制人工林生长的主要因素,也是评价生态环境状况的主要指标。因此,研究土壤水分的动态变化对于综合评价植被恢复引起的生态系统结构和功能的变化至关重要。

    应用工程措施是开展植被恢复的有效方式,反坡台、水平阶、水平沟、鱼鳞坑等工程措施能够有效促进水分入渗,减少地表径流,控制水土流失,起到增加土壤水分的作用[1314]。其中,水平阶是黄土高原常见的工程措施,对于40~180 cm土层土壤含水量提升尤为明显[15]。水平阶整地与合理的生物措施配置,不仅能提高土壤水分利用率,促进灌草的生长,还能够有效拦截降水,改善土壤供水能力,起到良好的保持水土作用[1617]

    刺槐Robinia pseudoacacia和侧柏Platycladus orientalis适应性强、耐干旱贫瘠,成为了黄土高原植被恢复过程中主要的造林树种。诸多学者围绕黄土丘陵沟壑区植被恢复过程中土壤水分变化特征、植被类型、整地措施与土壤水分的关系开展了多尺度的研究[1820]。这些研究多集中在不同林地含水量状况的对比,而对水平阶整地与典型树种相结合下的土壤水分特征研究并不多见。基于此,本研究选择晋西黄土区典型的丘陵沟壑区,通过定位监测,分析水平阶整地和植被耦合作用下土壤水分的动态变化,为植被恢复和流域综合治理提供科学依据。

    • 研究区域位于山西省吉县的蔡家川流域,地理坐标为36°14′27″~36°18′23″N,110°39′45″~110°47′45″E,属于典型的黄土残塬沟壑区,土壤类型为褐土,黄土母质。该流域属暖温带大陆性气候,降雨主要集中在6—9月,年平均降雨量为579.0 mm,年潜在蒸发量为1 723.9 mm。蔡家川流域内人工林以刺槐林、油松Pinus tabuliformis林、侧柏林为主,林下植被以菊科Compositae、禾本科Gramineae、蔷薇科Rosaceae植物为主,代表性植物有黄刺玫Rosa xanthina、土庄绣线菊Spiraea pubescens、茅莓Rubus parvifolius、铁杆蒿Artemisia gmelinii、蒌蒿Artemisia selengensis、虉草Phalaris arundinacea、紫丁香Syringa oblata、薹草Carex tristachya等。

    • 以研究区内林分密度和林龄基本一致的典型人工植被刺槐林地和侧柏林地作为土壤水分观测样地,采用配对试验设计,分别设置自然坡面刺槐林地、自然坡面侧柏林地、水平阶刺槐林地、水平阶侧柏林地,开展土壤水分定位监测,分别于各样地内设置3个面积为20 m×20 m的样方开展每木检尺,测定各样地的立地条件和林分基本信息,包括海拔、坡度、坡向以及林下主要植被的胸径、树高、冠幅和土壤容重,各样地基本情况见表1

      样地类型海拔/m坡度/(°)坡向/(°)主要林下植物胸径/cm树高/m冠幅/m2容重/(g·cm−3)
      自然坡面刺槐林地1 127.523230(西南)茅莓、黄刺玫20.53±4.3815.32±2.013.34±0.871.46±0.08
      水平阶刺槐林地 1 127.523230(西南)茅莓、黄刺玫20.81±3.9715.93±1.983.15±0.941.31±0.15
      自然坡面侧柏林地825.521180(南)薹草    11.44±3.797.02±1.992.78±0.891.26±0.14
      水平阶侧柏林地 825.521180(南)薹草    11.93±3.457.23±1.542.59±0.721.19±0.11
        说明:胸径、树高、冠幅和容重的数值为平均值±标准差。

      Table 1.  General situation of the sample plots

    • 于各样地内布设电容式频域反射(frequency domain refletrometry,FDR)土壤水分传感器,分不同土壤深度(0~10、10~20、20~40、40~60、60~80、80~100、100~120、120~140、140~160、160~180 cm),在生长季(2019年5月1日—9月31日)进行土壤水分定位监测,5 min测定1次。为了对FDR测定值进行数据标定,在每个样地中央挖掘土壤剖面2 m,每层10 cm,用铝盒取土,用烘干法测定土壤含水量。

    • 有序样本最优分割法是属于系统聚类中的方法,能够在不打乱样本原有顺序的基础上进行聚类分析。本研究在得到数据分析结果后绘制碎石图,拟合误差函数及分类数关系曲线,从而确定最优分类数,同时以标准差(S)和变异系数(Cv)为指标,对土壤水分含量进行聚类,确定土壤水分的垂直变化层次[2122]

    • 采用Excel 2019和SPSS 23.0对实测数据进行统计分析,使用Origin 2019进行数据可视化处理。采用SPSS 23.0进行单因素方差分析(one-way ANOVA),相关数据用平均值±标准差表示,同因素不同水平间差异显著性采用最小显著差异法(LSD)进行检验(P<0.05)。

    • 2019年研究区共发生降雨85次,总降雨量为390.1 mm。如图1所示:2019年生长季内共发生54次降雨事件,总降雨量为304.0 mm,占全年总降雨量77.9%。其中,最小降雨量为0.2 mm,最大降雨量为77.8 mm,最大降雨强度为9.6 mm·h−1,最长的降雨历时达55.58 h。在54次降雨事件中,降雨量大于20 mm的有2次,分别发生在6月4日和9月9日,占生长季总降雨量的45.90%;降雨量在5~20 mm的降雨事件有12次,占生长季总降雨量的38.90%;降雨量小于5 mm的事件有40次,占生长季降雨量的15.20%。可见研究期间降雨以小到中雨为主,集中在6—9月。

      Figure 1.  Rainfall distribution during the growing season (from May to September) in the study area in 2019

    • 以自然坡面刺槐林地生长季土壤水分变化为例(图2A):5月降雨量较少,所以土壤含水量无显著变化;6月随着降雨量的增加,0~60 cm土层变化剧烈;7、8月,随着降雨量的减少,土壤水分变化较小;9月随着降雨量的增加,0~60 cm土层土壤含水量波动明显。

      Figure 2.  Dynamic changes of soil moisture with time before and after level benches

      表2可见:各月份水平阶整地前后土壤水分差异显著(P<0.05)。5月,水平阶刺槐林地土壤含水量显著高于自然坡面刺槐林地,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05);6月,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05),但水平阶和自然坡面刺槐林地之间差异不显著;7月,水平阶刺槐林地土壤含水量与自然坡面刺槐林地差异不显著,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05)。8—9月,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05),但水平阶和自然坡面刺槐林地土壤含水量之间差异不显著。综合对比水平阶整地前后土壤含水量,从大到小排序为水平阶侧柏林地、自然坡面侧柏林地、水平阶刺槐林地、自然坡面刺槐林地。土壤含水量时间变化与降雨量大小关系密切,随降雨量的增加而增加。

      月份土壤体积含水量/%
      自然坡面刺槐林地水平阶刺槐林地自然坡面侧柏林地水平阶侧柏林地
      513.60±0.12 Dd15.84±0.17 Cd15.98±0.19 Aa16.25±0.10 Bc
      616.91±1.46 Ba17.68±1.20 Ba17.06±2.13 Bb21.58±2.73 Aa
      715.48±0.49 BCb15.20±0.53 Cb15.73±0.72 Bc17.74±0.61 Ab
      814.31±0.37 Bc14.47±0.31 Bc14.51±0.51 Bd16.98±0.40 Abc
      916.82±2.05 Ba17.30±1.84 Ba17.69±1.87 Bab20.86±2.64 Aa
      合计15.42±1.32 A16.10±1.22 A16.19±1.10 A18.68±2.14 B
        说明:不同大写字母表示同一月份不同样地之间差异显著(P<0.05),不同小写字母表示同一样地不同月份之间差异显著(P<0.05)。

      Table 2.  Monthly variation of soil volumetric water in different sample plots

    • 表3可见:同一深度水平阶整地前后土壤水分变化不同,不同深度土壤含水量差异显著(P<0.05)。在垂直方向上,水平阶整地后各土层土壤含水量明显提升,侧柏林地各土层平均土壤含水量均高于刺林槐林地。0~10 cm土层,4个样地土壤含水量无显著差异,其中水平阶侧柏林地土壤含水量最高,为16.25%;10~20和20~40 cm土层,自然坡面侧柏林地土壤含水量显著高于自然坡面刺槐林地(P<0.05),水平阶刺槐林地和侧柏林地土壤含水量差异不显著;40~60和60~80 cm土层,水平阶刺槐林地和侧柏林地土壤含水量显著高于自然坡面刺槐林地和侧柏林地(P<0.05),自然坡面侧柏林地土壤含水量显著高于自然坡面刺槐林地(P<0.05);80~100 cm土层,水平阶与自然坡面刺槐林地土壤含水量差异不显著,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05);100~120、120~140、140~160 cm土层,土壤含水量变化同80~100 cm土层;160~180 cm土层,水平阶刺槐林地与自然坡面刺槐林地土壤含水量差异不显著,水平阶对侧柏林地土壤含水量提升显著(P<0.05)。

      土层/cm土壤含水量/%
      自然坡面刺槐林地水平阶刺槐林地自然坡面侧柏林地水平阶侧柏林地
      0~1015.36±2.99 Abc15.96±3.40 Aa15.89±3.25 Abcd16.25±3.31 Abc
      10~2016.85±3.79 Aab17.05±3.95 Aab20.59±4.38 Aa21.22±3.98 Ab
      20~4019.37±3.64 Aa19.49±3.65 Ab21.57±4.54 Aa21.93±4.38 Abc
      40~6016.95±1.82 Aab20.08±3.96 Ab21.30±4.59 Aa23.06±4.06 Abc
      60~8014.32±0.90 Cbc15.48±1.81 Bac19.49±3.03 Aac21.54±2.86 ABbc
      80~10013.81±0.87 Abc13.69±0.48 Aa18.88±2.03 Babc21.03±0.85 Ac
      100~12014.30±0.15 Bbc14.70±0.19 Ba16.11±1.03 Abcd17.35±0.33 Abc
      120~14013.15±0.58 Dc14.07±0.46 Ca15.61±0.23 Bbcd16.93±0.32 Abc
      140~16013.41±0.39 Dc14.17±0.38 Ca14.86±0.23 Bbd17.18±0.28 Abc
      160~18013.57±0.79 BCc13.23±0.26 Ca14.12±0.43 Bd16.68±0.39 Aa
        说明:不同大写字母表示同一深度不同样地之间差异显著(P<0.05),不同小写字母表示同一样地不同深度之间差异显著(P<0.05)。

      Table 3.  Vertical variation of soil volumetric water of different sample plots

      变异系数的大小反映土壤含水量变化的剧烈程度,变异系数越小,土壤含水量变化越小,反之越大。在0~180 cm土层范围内,将土壤水分的垂直变化划分为3个层次:活跃层、次活跃层以及相对稳定层。水平阶整地前后、不同植被类型样地土壤水分划分层次明显不同,自然坡面刺槐林地水分活跃层为0~10 cm土层(S=0~2.99,Cv=0~19.44%),次活跃层为10~60 cm土层(S=1.82~2.99,Cv=10.72%~19.44%),60 cm以下土层为相对稳定层(S=0.79~1.82,Cv=5.80%~10.72%);水平阶刺槐林地活跃层为0~20 cm土层(S=0~3.95,Cv=0~23.16%),次活跃层为20~80 cm土层(S=1.81~3.95,Cv=11.67%~23.16%),80 cm以下土层为相对稳定层(S=0.26~1.81,Cv=1.96%~11.67%);自然坡面侧柏林地活跃层为0~40 cm (S=0~4.54,Cv=0~21.07%),次活跃层为40~100 cm (S=2.03~4.54,Cv=10.75%~21.07%),100 cm以下土层为相对稳定层(S=0.43~2.03,Cv=3.05%~10.75%);水平阶侧柏林地活跃层为0~60 cm 土层(S=0~4.06,Cv=0~21.40%),次活跃层为60~140 cm土层(S=0.32~4.06,Cv=1.72%~21.40%),140 cm以下土层为相对稳定层(S=0.32~0.39,Cv=1.60%~1.72%)。从图3还可以看出:水平阶刺槐林的土壤水分活跃层与次活跃层深度范围为0~80 cm,其深度范围比自然坡面刺槐林地(0~60 cm)提升了33%,同样,水平阶侧柏林地土壤水分活跃层与次活跃层的深度范围为0~140 cm,比自然坡面侧柏林地(0~100 cm)提升了40%。侧柏林样地土壤水分的活跃层和次活跃层土层范围明显大于刺槐林样地。

      Figure 3.  Vertical soil moisture level division of different sample plots

    • 土壤水分动态变化受降雨、地形、植被等直接影响,其中降雨是制约黄土丘陵区植被恢复与重建的重要因素,也是土壤水分的重要来源之一。本研究发现:土壤含水量大小与降雨量密切相关,随降雨量的增加而增加,这与翟博超等[23]在黄土丘陵区的研究结果一致。研究区降雨主要发生在5—9月,此阶段为植物的生长期,土壤水分动态活跃期也同期进行。研究区人工林的土壤水分特征具有明显的时间差异性,5月,由于土壤接受的降雨补给较少,土壤含水量较低,进入6月,随着降雨量的增加,土壤含水量呈明显上升趋势,7—8月,土壤得到降雨补给,但土壤含水量并没有表现出明显的增长趋势,这可能是由于从7月初开始,气温升高、太阳辐射变强,植物生理活动活跃,加之降雨对根系区水分的补充,植物进入生长旺盛阶段,同时此阶段植物蒸腾和土壤蒸发作用逐渐变强,消耗了一部分土壤水分,林地土壤水分动态表现为7—8月整体平稳,这与强方方[24]等的研究结果一致。

      已有研究在对黄土丘陵区坡面整地和植被耦合下的土壤水分特征分析中发现:除降雨季节分布格局外,植被本身的属性也是影响水分变化的重要因素,土壤水分动态变化与植被冠层截流、树干茎流、根系状况等直接相关[25]。本研究发现:自然坡面和水平阶侧柏林地土壤含水量分别显著高于自然坡面和水平阶刺槐林地,这可能由于一方面侧柏的高度较低,冠幅较小,冠层截留的效应不及刺槐显著,且可以利用的坡面径流比刺槐少;另一方面,刺槐根系发达,林分耗水量大,导致土壤含水量降低。这与李玉婷等[26]在晋西黄土区典型人工林特征及土壤水分动态研究的结果一致。

      本研究发现:水平阶整地方式对土壤含水量具有显著的提升作用,且水平阶整地方式对于侧柏样地土壤含水量的提升效果要优于刺槐样地。水平阶侧柏林地、刺槐林地不同深度的土壤含水量都要高于自然坡面侧柏林地、刺槐林地,这与前人研究结果一致[27],即工程措施的开展与应用通过改变地形,拦蓄降水,从而提升土壤的含水量。王悦等[28]研究认为:相同降雨强度下,不同微地形塑造能有效增加土壤含水量,且水平阶对土壤水分的增加效果优于鱼鳞坑,这也证明水平阶整地方式对提高土壤含水量起到了积极的作用。程谅等[29]研究指出:整地措施对坡面土壤水分的空间异质性提升明显,提升了坡面的入渗能力。本研究也发现:水平阶整地后,可以拦蓄更多的地表径流,增加土壤水分入渗量,最终提高了土壤含水量。水平阶整地对提高土壤含水量的效果侧柏林地要优于刺槐林地,一方面可能由于刺槐林凋落物积蓄量较少且易于分解,侧柏林常年凋落物层较厚,水平阶整地后侧柏林地可以存留更多凋落物,抑制了土壤水分蒸发,使得土壤含水量增加[30];另一方面,侧柏根系深度较浅,对深层土壤水分消耗量较小,土壤含水量较高,这与张佳楠等[31]的研究结果一致。

      土壤水分的垂直分层主要受降雨、土壤蒸发、植被作用等多种因素的影响,总体表现出上层土壤水分动态变化剧烈,下层土壤水分相对稳定的特征[32]。不同学者对土层的划分标准不同,有依据土壤含水量的变化将人工林土壤层次划分为交换层、利用层、调节层和稳定层 [33];有从蒸散耗水角度,将土壤水分变化划分为地表植物蒸散耗水层、林下灌木蒸散耗水层、刺槐蒸散耗水层[34];还有根据变异系数将土壤水分垂直划分为速变层和相对稳定层[35]。本研究根据土壤含水量、标准差以及变异系数将研究样地土壤水分垂直变化划分为土壤含水量活跃层、次活跃层与相对稳定层。活跃层土壤含水量主要与降雨、土壤蒸散发、植被蒸腾有关,含水量相对较高,水分动态变化较为剧烈;次活跃层处于活跃层与相对稳定层交接地带,植被根系主要分布于此部分,为植被生长提供必要的水分保障;随着土层深度的增加,相对稳定层几乎得不到降雨和地下水的补充,受干扰比较小,所以土壤含水量减少且趋于稳定。相关报道说明,水平阶整地能有效改善土壤状况,改变垂直方向上土壤水分活跃层、次活跃层、相对稳定层的分布,促进人工林地植被生长状况[36]。本研究结果显示:水平阶整地有效提升了侧柏林地和刺槐林地土壤活跃层与次活跃层的深度。这是因为水平阶整地通过改造下垫面土壤性质,改变了土壤水分的分布状况,一方面能够有效拦截径流和泥沙,另一方面也使得降雨得到再分配,植被能够通过拦截到的径流强化自身的水分供应[37],使生长季中水平阶整地对土壤水分的补充和调节效果明显。

    • 在水平阶整地和植被类型的耦合作用下,水平阶整地措施能显著提升土壤含水量,且对侧柏林地的提升效果优于刺槐林地。黄土高原地区土壤水分可划分为活跃层、次活跃层、相对稳定层3个垂直层次,水平阶整地可以显著提升土壤水分的活跃层、次活跃层深度,且水平阶侧柏林地提升效果要优于水平阶刺槐林地。

Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return