-
土壤水分是连接土壤-植被-大气连续体中大气降水、地表水、土壤水和地下水相互转化的重要环节[1−2]。在降雨、植被类型、整地方式等诸多因素的影响下,土壤水分可能存在时空差异[3]。黄土高原是生态脆弱和水土流失严重的地区,为此开展了大规模的退耕还林还草工程[4−5]。2000—2020年期间,黄土高原耕地、林地、未利用土地变化幅度明显,耕地面积减少了12 918 km2,林地面积增加了3 232 km2,灌木面积增加了555 km2,未利用地面积减少了1 982 km2[6]。但黄土高原降水少、蒸发强,不合理的造林方式消耗了大量的土壤水分[7−8],林地土壤水分亏缺愈发严重[9−10],土壤干层的情况不断加深[11−12],土壤水分成为了限制人工林生长的主要因素,也是评价生态环境状况的主要指标。因此,研究土壤水分的动态变化对于综合评价植被恢复引起的生态系统结构和功能的变化至关重要。
应用工程措施是开展植被恢复的有效方式,反坡台、水平阶、水平沟、鱼鳞坑等工程措施能够有效促进水分入渗,减少地表径流,控制水土流失,起到增加土壤水分的作用[13−14]。其中,水平阶是黄土高原常见的工程措施,对于40~180 cm土层土壤含水量提升尤为明显[15]。水平阶整地与合理的生物措施配置,不仅能提高土壤水分利用率,促进灌草的生长,还能够有效拦截降水,改善土壤供水能力,起到良好的保持水土作用[16−17]。
刺槐Robinia pseudoacacia和侧柏Platycladus orientalis适应性强、耐干旱贫瘠,成为了黄土高原植被恢复过程中主要的造林树种。诸多学者围绕黄土丘陵沟壑区植被恢复过程中土壤水分变化特征、植被类型、整地措施与土壤水分的关系开展了多尺度的研究[18−20]。这些研究多集中在不同林地含水量状况的对比,而对水平阶整地与典型树种相结合下的土壤水分特征研究并不多见。基于此,本研究选择晋西黄土区典型的丘陵沟壑区,通过定位监测,分析水平阶整地和植被耦合作用下土壤水分的动态变化,为植被恢复和流域综合治理提供科学依据。
-
研究区域位于山西省吉县的蔡家川流域,地理坐标为36°14′27″~36°18′23″N,110°39′45″~110°47′45″E,属于典型的黄土残塬沟壑区,土壤类型为褐土,黄土母质。该流域属暖温带大陆性气候,降雨主要集中在6—9月,年平均降雨量为579.0 mm,年潜在蒸发量为1 723.9 mm。蔡家川流域内人工林以刺槐林、油松Pinus tabuliformis林、侧柏林为主,林下植被以菊科Compositae、禾本科Gramineae、蔷薇科Rosaceae植物为主,代表性植物有黄刺玫Rosa xanthina、土庄绣线菊Spiraea pubescens、茅莓Rubus parvifolius、铁杆蒿Artemisia gmelinii、蒌蒿Artemisia selengensis、虉草Phalaris arundinacea、紫丁香Syringa oblata、薹草Carex tristachya等。
-
以研究区内林分密度和林龄基本一致的典型人工植被刺槐林地和侧柏林地作为土壤水分观测样地,采用配对试验设计,分别设置自然坡面刺槐林地、自然坡面侧柏林地、水平阶刺槐林地、水平阶侧柏林地,开展土壤水分定位监测,分别于各样地内设置3个面积为20 m×20 m的样方开展每木检尺,测定各样地的立地条件和林分基本信息,包括海拔、坡度、坡向以及林下主要植被的胸径、树高、冠幅和土壤容重,各样地基本情况见表1。
样地类型 海拔/m 坡度/(°) 坡向/(°) 主要林下植物 胸径/cm 树高/m 冠幅/m2 容重/(g·cm−3) 自然坡面刺槐林地 1 127.5 23 230(西南) 茅莓、黄刺玫 20.53±4.38 15.32±2.01 3.34±0.87 1.46±0.08 水平阶刺槐林地 1 127.5 23 230(西南) 茅莓、黄刺玫 20.81±3.97 15.93±1.98 3.15±0.94 1.31±0.15 自然坡面侧柏林地 825.5 21 180(南) 薹草 11.44±3.79 7.02±1.99 2.78±0.89 1.26±0.14 水平阶侧柏林地 825.5 21 180(南) 薹草 11.93±3.45 7.23±1.54 2.59±0.72 1.19±0.11 说明:胸径、树高、冠幅和容重的数值为平均值±标准差。 Table 1. General situation of the sample plots
-
于各样地内布设电容式频域反射(frequency domain refletrometry,FDR)土壤水分传感器,分不同土壤深度(0~10、10~20、20~40、40~60、60~80、80~100、100~120、120~140、140~160、160~180 cm),在生长季(2019年5月1日—9月31日)进行土壤水分定位监测,5 min测定1次。为了对FDR测定值进行数据标定,在每个样地中央挖掘土壤剖面2 m,每层10 cm,用铝盒取土,用烘干法测定土壤含水量。
-
有序样本最优分割法是属于系统聚类中的方法,能够在不打乱样本原有顺序的基础上进行聚类分析。本研究在得到数据分析结果后绘制碎石图,拟合误差函数及分类数关系曲线,从而确定最优分类数,同时以标准差(S)和变异系数(Cv)为指标,对土壤水分含量进行聚类,确定土壤水分的垂直变化层次[21−22]。
-
采用Excel 2019和SPSS 23.0对实测数据进行统计分析,使用Origin 2019进行数据可视化处理。采用SPSS 23.0进行单因素方差分析(one-way ANOVA),相关数据用平均值±标准差表示,同因素不同水平间差异显著性采用最小显著差异法(LSD)进行检验(P<0.05)。
-
2019年研究区共发生降雨85次,总降雨量为390.1 mm。如图1所示:2019年生长季内共发生54次降雨事件,总降雨量为304.0 mm,占全年总降雨量77.9%。其中,最小降雨量为0.2 mm,最大降雨量为77.8 mm,最大降雨强度为9.6 mm·h−1,最长的降雨历时达55.58 h。在54次降雨事件中,降雨量大于20 mm的有2次,分别发生在6月4日和9月9日,占生长季总降雨量的45.90%;降雨量在5~20 mm的降雨事件有12次,占生长季总降雨量的38.90%;降雨量小于5 mm的事件有40次,占生长季降雨量的15.20%。可见研究期间降雨以小到中雨为主,集中在6—9月。
-
以自然坡面刺槐林地生长季土壤水分变化为例(图2A):5月降雨量较少,所以土壤含水量无显著变化;6月随着降雨量的增加,0~60 cm土层变化剧烈;7、8月,随着降雨量的减少,土壤水分变化较小;9月随着降雨量的增加,0~60 cm土层土壤含水量波动明显。
由表2可见:各月份水平阶整地前后土壤水分差异显著(P<0.05)。5月,水平阶刺槐林地土壤含水量显著高于自然坡面刺槐林地,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05);6月,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05),但水平阶和自然坡面刺槐林地之间差异不显著;7月,水平阶刺槐林地土壤含水量与自然坡面刺槐林地差异不显著,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05)。8—9月,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05),但水平阶和自然坡面刺槐林地土壤含水量之间差异不显著。综合对比水平阶整地前后土壤含水量,从大到小排序为水平阶侧柏林地、自然坡面侧柏林地、水平阶刺槐林地、自然坡面刺槐林地。土壤含水量时间变化与降雨量大小关系密切,随降雨量的增加而增加。
月份 土壤体积含水量/% 自然坡面刺槐林地 水平阶刺槐林地 自然坡面侧柏林地 水平阶侧柏林地 5 13.60±0.12 Dd 15.84±0.17 Cd 15.98±0.19 Aa 16.25±0.10 Bc 6 16.91±1.46 Ba 17.68±1.20 Ba 17.06±2.13 Bb 21.58±2.73 Aa 7 15.48±0.49 BCb 15.20±0.53 Cb 15.73±0.72 Bc 17.74±0.61 Ab 8 14.31±0.37 Bc 14.47±0.31 Bc 14.51±0.51 Bd 16.98±0.40 Abc 9 16.82±2.05 Ba 17.30±1.84 Ba 17.69±1.87 Bab 20.86±2.64 Aa 合计 15.42±1.32 A 16.10±1.22 A 16.19±1.10 A 18.68±2.14 B 说明:不同大写字母表示同一月份不同样地之间差异显著(P<0.05),不同小写字母表示同一样地不同月份之间差异显著(P<0.05)。 Table 2. Monthly variation of soil volumetric water in different sample plots
-
由表3可见:同一深度水平阶整地前后土壤水分变化不同,不同深度土壤含水量差异显著(P<0.05)。在垂直方向上,水平阶整地后各土层土壤含水量明显提升,侧柏林地各土层平均土壤含水量均高于刺林槐林地。0~10 cm土层,4个样地土壤含水量无显著差异,其中水平阶侧柏林地土壤含水量最高,为16.25%;10~20和20~40 cm土层,自然坡面侧柏林地土壤含水量显著高于自然坡面刺槐林地(P<0.05),水平阶刺槐林地和侧柏林地土壤含水量差异不显著;40~60和60~80 cm土层,水平阶刺槐林地和侧柏林地土壤含水量显著高于自然坡面刺槐林地和侧柏林地(P<0.05),自然坡面侧柏林地土壤含水量显著高于自然坡面刺槐林地(P<0.05);80~100 cm土层,水平阶与自然坡面刺槐林地土壤含水量差异不显著,水平阶侧柏林地土壤含水量显著高于自然坡面侧柏林地(P<0.05);100~120、120~140、140~160 cm土层,土壤含水量变化同80~100 cm土层;160~180 cm土层,水平阶刺槐林地与自然坡面刺槐林地土壤含水量差异不显著,水平阶对侧柏林地土壤含水量提升显著(P<0.05)。
土层/cm 土壤含水量/% 自然坡面刺槐林地 水平阶刺槐林地 自然坡面侧柏林地 水平阶侧柏林地 0~10 15.36±2.99 Abc 15.96±3.40 Aa 15.89±3.25 Abcd 16.25±3.31 Abc 10~20 16.85±3.79 Aab 17.05±3.95 Aab 20.59±4.38 Aa 21.22±3.98 Ab 20~40 19.37±3.64 Aa 19.49±3.65 Ab 21.57±4.54 Aa 21.93±4.38 Abc 40~60 16.95±1.82 Aab 20.08±3.96 Ab 21.30±4.59 Aa 23.06±4.06 Abc 60~80 14.32±0.90 Cbc 15.48±1.81 Bac 19.49±3.03 Aac 21.54±2.86 ABbc 80~100 13.81±0.87 Abc 13.69±0.48 Aa 18.88±2.03 Babc 21.03±0.85 Ac 100~120 14.30±0.15 Bbc 14.70±0.19 Ba 16.11±1.03 Abcd 17.35±0.33 Abc 120~140 13.15±0.58 Dc 14.07±0.46 Ca 15.61±0.23 Bbcd 16.93±0.32 Abc 140~160 13.41±0.39 Dc 14.17±0.38 Ca 14.86±0.23 Bbd 17.18±0.28 Abc 160~180 13.57±0.79 BCc 13.23±0.26 Ca 14.12±0.43 Bd 16.68±0.39 Aa 说明:不同大写字母表示同一深度不同样地之间差异显著(P<0.05),不同小写字母表示同一样地不同深度之间差异显著(P<0.05)。 Table 3. Vertical variation of soil volumetric water of different sample plots
变异系数的大小反映土壤含水量变化的剧烈程度,变异系数越小,土壤含水量变化越小,反之越大。在0~180 cm土层范围内,将土壤水分的垂直变化划分为3个层次:活跃层、次活跃层以及相对稳定层。水平阶整地前后、不同植被类型样地土壤水分划分层次明显不同,自然坡面刺槐林地水分活跃层为0~10 cm土层(S=0~2.99,Cv=0~19.44%),次活跃层为10~60 cm土层(S=1.82~2.99,Cv=10.72%~19.44%),60 cm以下土层为相对稳定层(S=0.79~1.82,Cv=5.80%~10.72%);水平阶刺槐林地活跃层为0~20 cm土层(S=0~3.95,Cv=0~23.16%),次活跃层为20~80 cm土层(S=1.81~3.95,Cv=11.67%~23.16%),80 cm以下土层为相对稳定层(S=0.26~1.81,Cv=1.96%~11.67%);自然坡面侧柏林地活跃层为0~40 cm (S=0~4.54,Cv=0~21.07%),次活跃层为40~100 cm (S=2.03~4.54,Cv=10.75%~21.07%),100 cm以下土层为相对稳定层(S=0.43~2.03,Cv=3.05%~10.75%);水平阶侧柏林地活跃层为0~60 cm 土层(S=0~4.06,Cv=0~21.40%),次活跃层为60~140 cm土层(S=0.32~4.06,Cv=1.72%~21.40%),140 cm以下土层为相对稳定层(S=0.32~0.39,Cv=1.60%~1.72%)。从图3还可以看出:水平阶刺槐林的土壤水分活跃层与次活跃层深度范围为0~80 cm,其深度范围比自然坡面刺槐林地(0~60 cm)提升了33%,同样,水平阶侧柏林地土壤水分活跃层与次活跃层的深度范围为0~140 cm,比自然坡面侧柏林地(0~100 cm)提升了40%。侧柏林样地土壤水分的活跃层和次活跃层土层范围明显大于刺槐林样地。
Soil moisture characteristics under level bench and vegetation in loess area of western Shanxi Province
doi: 10.11833/j.issn.2095-0756.20240114
- Received Date: 2024-01-10
- Accepted Date: 2024-06-06
- Rev Recd Date: 2024-06-02
- Available Online: 2024-09-25
- Publish Date: 2024-09-25
-
Key words:
- level bench /
- vegetation type /
- soil water content /
- dynamic change /
- loess area in western Shanxi
Abstract:
Citation: | ZHU Hongsheng, ZHAO Jiongchang, CHI Jinming, WANG Zihan, WANG Liping, WANG Zhengze, YU Yang. Soil moisture characteristics under level bench and vegetation in loess area of western Shanxi Province[J]. Journal of Zhejiang A&F University, 2024, 41(5): 996-1004. doi: 10.11833/j.issn.2095-0756.20240114 |