-
果胶类多糖广泛分布于高等植物的根、茎、叶、果实等的细胞初生壁和细胞间隙,对细胞组织起着软化和黏合作用,同时还是抵御病原体微生物入侵的天然屏障[1]。2-酮-3-脱氧辛糖酸(KDO)是果胶类多糖鼠李半乳糖醛酸聚糖-Ⅱ(Rhamnogalacturonans Ⅱ,RG-Ⅱ)成分中很少见的八碳糖[2],在进化过程中非常保守,对花粉管的伸长和生长具有一定的作用[3-4]。KDO合成过程中涉及到5种酶[5],其中阿拉伯糖-5-磷酸异构酶(D-arabinose 5-phosphate isomerase,KdsD)是KDO生物合成过程中的第1个关键酶,可以催化核酮糖-5-磷酸(D-ribulose 5-phosphate,Ru5P)的异构化,以产生在KDO生物合成途径中的第1个中间产物D-阿拉伯糖-5-磷酸(D-arabinose 5-phosphate,A5P)。KDO最初是在革兰氏阴性菌中发现的,它连接O-特异侧链与类脂A共同嵌入细胞壁外膜上[6]。细胞壁中KDO合成的阻断会导致类脂A物质的累积和细胞生长停滞[7]。研究发现,KDO生物合成途径也存在于藻类植物与高等植物中[2, 8]。大肠埃希菌Escherichia coli中的KdsD晶体结构已经被解析,它是一个同源四聚体[9-11]。每个KdsD亚基包含2个不同的结构域:N-末端糖异构酶(SIS)结构域,主要参与磷糖异构化作用,以及1对未知功能的胱硫醚-β-合酶(CBS)结构域。通过定点突变确定了大肠埃希菌的Lys59,His88和His193对应于绿脓杆菌Pseudomonas aeruginosa的Lys56,His85和His190[12-14]分别是其活性重要的保守残基。目前,植物中KdsD的研究很少,其晶体结构也尚不清楚,植物来源的KdsD酶功能及催化作用机制、酶的催化特性等科学问题仍需要更加深入研究。毛竹Phyllostachys edulis是中国广泛分布的一种经济价值很高的植物,在林业生产中的地位至关重要。本研究拟克隆毛竹KdsD基因,分析它在不同组织的表达特异性,进行生物信息学分析和原核表达,经过Ni-NTA亲和层析和分子筛层析(SEC)纯化获得高纯度的蛋白,并对其酶学性质进行分析,为后续KdsD晶体学结构和植物KdsD基因功能的研究打下理论基础。
Gene cloning, expression, and purification of the arabinose-5-phosphate isomerase from Phyllostachys edulis
-
摘要: 毛竹Phyllostachys edulis阿拉伯糖-5-磷酸异构酶(PeKdsD)是2-酮-3-脱氧辛糖酸(KDO)生物合成途径的第1个关键酶。采用逆转录实时聚合酶链式反应(qRT-PCR)克隆得到毛竹KdsD基因。该基因cDNA全长1 038 bp,编码346个氨基酸;对不同物种来源的KdsD氨基酸序列进行比对和系统进化树分析。结果表明:毛竹的KdsD与玉米Zea mays等植物来源的KdsD有很高的序列一致性,而与微生物来源的KdsD序列一致性较低。毛竹不同组织实时荧光定量聚合酶链式反应(qRT-PCR)结果表明:PeKdsD基因在叶中表达量远远高于其他组织。在大肠埃希菌Escherichia coli原核表达系统中获得了KdsD的可溶性高表达蛋白,将大量表达的重组蛋白经过Ni-NTA亲和层析和分子筛层析(SEC)进行纯化,发现KdsD在溶液(30 mmol·L-1三羟甲基氨基甲烷pH 8.0,200 mmol·L-1氯化钠)中以多种聚体的形式存在;酶学性质测定的结果表明:毛竹KdsD酶最适pH值为pH 8.5,最适作用温度为37℃。此结果为后期研究植物KdsD蛋白的结构与功能奠定了基础。图7参17Abstract: Phyllostachys edulis arabinose-5-phosphate isomerase (PeKdsD) is the first key enzyme in the biosynthesis of 3-deoxy-D-manno-octulosonate (KDO). The full length cDNA of the KdsD gene (1 038 bp with 346 amino acids) was cloned using reverse transcription polymerase chain reaction (qRT-PCR) followed by protein Basic Local Alignment Search Tool (BLAST) and phylogenetic tree analysis of the amino acid sequence. Then a qRT-PCR analysis of diverse tissues in Ph. edulis was conducted, and a mass of soluble KdsD protein was obtained through a prokaryotic expression system in Escherichia coli. The recombinant protein was further purified through Ni-NTA affinity and size exclusion chromatography (SEC) in a buffer of 30 mmol·L-1 Tris-HCl pH 8.5, 200 mmol·L-1 NaCl to determine enzymatic properties. Results of the amino acid sequence among different species indicated that the PeKdsD isomerase had a high sequence similarity with KdsD in Zea mays but was low in microorganisms. The qRT-PCR analysis of diverse tissues in Ph. edulis revealed that PeKdsD had its highest expression level in the leaf. SEC results showed that the recombinant KdsD protein existed as protein polymers, and for enzymatic properties of PeKdsD the optimum reaction temperature was 37℃ with a pH of 8.5. This work provides a basis for determining the structure and function of plant KdsD.[Ch, 7 fig. 17 ref.]
-
-
[1] 孙元琳,汤坚. 果胶类多糖的研究进展[J]. 食品与机械, 2004, 20(6):60-63. SUN Yuanlin, TANG Jian. Research progress in petic polysaccharides[J]. Food Mach, 2004, 20(6):60-63. [2] YORK W S, DARVILL A G, MCNEIL M, et al. 3-deoxy-d-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan Ⅱ, a pectic polysaccharide in the primary cell walls of plants[J]. Carbohydr Res, 1985, 138(1):109-126. [3] SÉVENO M, SÉVENO-CARPENTIER E, VOXEUR A, et al. Characterization of a putative 3-deoxy-D-manno-2-octulosonic acid (Kdo) transferase gene from Arabidopsis thaliana[J]. Glycobiology, 2010, 20(5):617-628. [4] LI Yi. Studies of 3-Deoxy-D-manno-Octulosonate 8-Phosphate Phosphatase:Mechanistic Insights and a Gene Fusion Example[M]. Ann Arbor:ProQuest, 2009. [5] DELMAS F, SÉVENO M, NORTHEY J G B, et al. The synthesis of the rhamnogalacturonan(Ⅱ)component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation[J]. J Exper Bot, 2008, 59(10):2639-2647. [6] SMYTH K M, MARCHANT A. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria[J]. Carboydr Res, 2013, 380(2):70-75. [7] RAETZ C R. Biochemistry of endotoxins[J]. Ann Rev Biochem, 1990, 59(1):129-170. [8] BECKER B, LOMMERSE J P M, MELKONIAN M, et al. The structure of an acidic trisaccharide component from a cell wall polysaccharide preparation of the green alga Tetraselmis striata Butcher[J]. Carbohydr Res, 1995, 267(2):313-321. [9] MEREDITH T C, WOODARD R W. Identification of GutQ from Escherichia coli as a D-arabinose 5-phosphate isomerase[J]. J Bacteriol, 2005, 187(20):6936-6942. [10] SPERANDEO P, POZZI C, DEHÒG, et al. Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG-yhbG locus[J]. Res Microbiol, 2006, 157(6):547-558. [11] MEREDITH T C, WOODARD R W. Escherichia coli YrbH is a D-arabinose 5-phosphate isomerase[J]. J Biol Chem, 2003, 278(35):32771-32777. [12] SOMMARUGA S, de GIOIA L, TORTORA P, et al. Structure prediction and functional analysis of KdsD, an enzyme involved in lipopolysaccharide biosynthesis[J]. Biochem Biophysi Res Commun, 2009, 388(2):222-227. [13] AIROLDI C, SOMMARUGA S, MERLO S, et al. Targeting bacterial membranes:identification of Pseudomonas aeruginosa D-Arabinose-5P isomerase and NMR characterisation of its substrate recognition and binding properties[J]. Chem BioChem, 2011, 12(5):719-727. [14] CHIU H J, GRANT J C, FARR C L, et al. Structural analysis of arabinose-5-phosphate isomerase from Bacteroides fragilis and functional implications[J]. Acta Crystallogr, 2014, 70(10):2640-2651. [15] 吴凯朝, 黄诚梅, 李杨瑞, 等. Trizol试剂法快速高效提取3种作物不同组织总RNA[J]. 南方农业学报, 2012, 12(12):1934-1939. WU Kaichao, HUANG Chengmei, LI Yangrui, et al. Fast and effective total RNA extraction from different tissues in 3 crops through the Trizol reagent method[J]. J Southern Agric, 2012, 12(12):1934-1939. [16] DISCHE Z, BORENFREUND E. A new spectrophotometric method for the detection and determination of keto sugars and trioses[J]. J Biol Chem, 1951, 192(2):583-587. [17] MOSBERG J A, YEP A, MEREDITH T C, et al. A unique arabinose 5-phosphate isomerase found within a genomic island associated with the uropathogenicity of Escherichia coli CFT073[J]. J Bacteriol, 2011, 193(12):2981-2988. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.06.002