留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析

傅卢成 卜柯丽 王灵杰 栗青丽 高培军 高岩 张汝民

傅卢成, 卜柯丽, 王灵杰, 栗青丽, 高培军, 高岩, 张汝民. 毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190398
引用本文: 傅卢成, 卜柯丽, 王灵杰, 栗青丽, 高培军, 高岩, 张汝民. 毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190398
FU Lucheng, BU Keli, WANG Lingjie, LI Qingli, GAO Peijun, GAO Yan, ZHANG Rumin. BN-PAGE analysis of thylakoid membrane protein complex during rapid growth of Phyllostachys edulis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190398
Citation: FU Lucheng, BU Keli, WANG Lingjie, LI Qingli, GAO Peijun, GAO Yan, ZHANG Rumin. BN-PAGE analysis of thylakoid membrane protein complex during rapid growth of Phyllostachys edulis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190398

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析

doi: 10.11833/j.issn.2095-0756.20190398
基金项目: 国家自然科学基金资助项目(31570686,30972397,31470704)
详细信息
    作者简介: 傅卢成,从事植物生理生化研究。E-mail: 2292435933@qq.com
    通信作者: 高培军,副教授,博士,从事竹林培育与利用。E-mail: 316919866@qq.com
  • 中图分类号: Q946.1

BN-PAGE analysis of thylakoid membrane protein complex during rapid growth of Phyllostachys edulis

  • 摘要:   目的  探讨毛竹Phyllostachys edulis笋竹茎秆的光合特性和光系统的发育情况。  方法  以当年生毛竹叶片和笋竹茎秆为材料,采用蓝绿温和胶电泳(BN-PAGE)分析茎秆和叶片类囊体膜蛋白,同时测定了光合色素含量和77 K低温荧光发射光谱。  结果  茎秆叶绿素和类胡萝卜素质量分数显著低于叶片(P<0.01),随着茎秆发育,叶绿素和类胡萝卜素质量分数显著升高。茎秆和叶片类囊体膜PSⅡ核心复合物较完整,捕光色素较多;叶片和茎秆基部PSⅠ核心复合物分离主要得到PsaA/B和PsaD亚基,茎秆中部得到PsaA/B,茎秆顶部未发现PsaA/B。叶片和茎秆77 K低温荧光发射光谱在685和745 nm处有2个明显主峰,四阶导数光谱出现6个极大值,主要是PSⅡ和PSⅠ核心复合物的荧光发射峰以及由PSⅡ外周捕光天线(LHCⅡ)、PSⅡ内周捕光天线(CP47)、PSⅡ内周捕光天线(CP43)、PSⅠ反应中心复合体(RCI)、PSⅠ捕光天线(LHCⅠ)的发射荧光峰引起的肩峰,其中茎秆顶部LHCⅡ和PSⅡ核心复合体的特征发射峰与叶片相比有明显蓝移现象。  结论  毛竹茎秆中PSⅡ核心复合体已形成,随着茎秆发育,笋衣逐渐脱落,色素大量合成,内周天线蛋白CP47和CP43以及外周捕光天线蛋白逐渐形成;同时,茎秆受到光照后PSⅠ核心蛋白PsaA和PsaB开始形成,逐渐组装合成PSⅠ核心复合体。图4表2参45
  • 图  1  毛竹类囊体膜蛋白BN-PAGE电泳图

    Figure  1.  Blue-native gel electrophoresis analysis of P. edulis thylakoid membrane protein complexes

    图  2  类囊体膜蛋白复合物第2向电泳

    Figure  2.  Two-dimension Tricine-SDS-PAGE results of protein complex in thylakoid membranes in P. edulis

    图  3  毛竹叶和茎秆的77 K荧光发射光谱和四阶导数光谱

    Figure  3.  77 K fluorescence emission spectrum and fourth-derivative spectrum from leaves and stems of Phyllostachys edulis

    图  4  毛竹叶和茎秆的77 K荧光发射光谱的高斯拟合

    Figure  4.  77 K fluorescence emission spectra and results of Gaussian fitness for leaves and stems of P. edulis

    表  1  毛竹叶和茎秆的光合色素质量分数

    Table  1.   Pigment content in leaves and stems of P. edulis

    位置质量分数/(μg·g−1)叶绿素a/类胡萝卜素叶绿素a/b
    叶绿素a叶绿素b总叶绿素类胡萝卜素
    叶  311.60±0.07 A89.30±0.01 A400.90±0.08 A96.00±0.01 A3.23±0.25 A3.46±0.27 B
    茎秆基部158.00±1.09 B52.10±0.20 B210.10±1.28 B66.60±0.48 B2.37±0.06 B3.03±0.10 B
    茎秆中部 64.90±0.29 C17.00±0.09 C 81.90±0.23 C28.90±0.17 C2.25±0.15 B3.83±0.35 B
    茎秆顶部 12.50±0.01 D 2.50±0.01 D 15.00±0.01 D 6.30±0.09 D2.02±0.31 B5.07±0.23 A
      说明:数值为平均值±标准偏差。同列不同大写字母表示差异极显著(P<0.01)
    下载: 导出CSV

    表  2  毛竹叶和茎秆的77 K荧光发射光谱高斯解析结果

    Table  2.   The results of Gaussian decomposition of 77 K fluorescence spectra for leaves and stems of P. edulis

    主峰1主峰2峰面积1峰面积2半峰宽1半峰宽2峰高1峰高2峰面积比峰高比半峰宽比
    68774118.9442.2026.3850.870.570.660.450.520.86
    茎秆基部68573812.2951.1023.8966.760.410.610.240.360.67
    茎秆中部68876831.3923.9230.3241.300.830.461.310.731.80
    茎秆顶部68475620.0961.8528.09130.480.570.380.320.221.50
    下载: 导出CSV
  • [1] BIRKHOLD K T, KOCH K E, DARNELL R L. Carbon and nitrogen economy of developing rabbiteye blueberry fruit [J]. J Am Soc Hortic Sci, 1992, 117: 139 − 145. doi:  10.21273/JASHS.117.1.139
    [2] KOZLOWSKI T T. Carbohydrate sources and sinks in woody plants II carbohydrate sources and sinks in woody plants [J]. Botl Rev, 1992, 58(2): 107 − 222. doi:  10.1007/BF02858600
    [3] NILSEN E T. 10-stem photosynthesis: extent, patterns, and role in plant carbon economy[M]// GARTNER B L. Plant Stems, [s.l.]: Academic Press, 1995: 223 − 240.
    [4] MANETAS Y. Photosynthesizing in the rain: beneficial effects of twig wetting on corticular photosynthesis through changes in the periderm optical properties [J]. Flora, 2004, 199(4): 334 − 341. doi:  10.1078/0367-2530-00161
    [5] SUN Q, YODA K, SUZUKI M, et al. Vascular tissue in the stem and roots of woody plants can conduct light [J]. J Exp Bot, 2005, 54(387): 1627 − 1635.
    [6] HIBBERD J M, QUICK W P. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants [J]. Nature, 2002, 415(6870): 451 − 454. doi:  10.1038/415451a
    [7] 占东霞, 张超, 张亚黎, 等. 膜下滴灌水分亏缺下棉花开花后非叶绿色器官光合特性及其对产量的贡献[J]. 作物学报, 2015, 41(12): 1880 − 1887. doi:  10.3724/SP.J.1006.2015.01880

    ZHAN Dongxia, ZHANG Chao, ZHANG Yali, et al. Photosynthetic characteristics after flowering and contribution of non-leaf green organs of cotton to yield under mulching-drip irrigation with water deficiency [J]. Acta Agron Sin, 2015, 41(12): 1880 − 1887. doi:  10.3724/SP.J.1006.2015.01880
    [8] 胡锋, 黄俊丽, 秦峰, 等. 植物叶绿体类囊体膜及膜蛋白研究进展[J]. 生命科学, 2011, 23(3): 291 − 298.

    HU Feng, HUANG Junli, QIN Feng, et al. Progress in chloroplast thylakoid membrane and membrane proteins [J]. Chin Bull Life Sci, 2011, 23(3): 291 − 298.
    [9] WOLLMAN F A, MINAI L, NECHUSHTAI R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes [J]. Biochim Biophysic Acta, 1999, 1411(1): 21 − 85. doi:  10.1016/S0005-2728(99)00043-2
    [10] SHEWRY P R. Biochemistry & molecular biology plants[M//BUCHANAN B B, GRUISSEM W, JONES R L. Biochemistry & Molecular Biology Plants. [s.l.]: Springer Nature, 2001: 105 − 106.
    [11] FRISO G, GIACOMELLI L, YTTERBERG A J, et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database [J]. Plant Cell, 2004, 16(2): 478 − 499. doi:  10.1105/tpc.017814
    [12] 高荣孚, 郑彩霞, 童年, 等. 高等植物光系统Ⅰ的研究(Ⅰ):叶绿体中存在2种光系统Ⅰ[J]. 北京林业大学学报, 1997, 19(1): 13 − 20.

    GAO Rongfu, ZHANG Caixia, TONG Nian, et al. Photosystem Ⅰ of higher plants(Ⅰ): two populations of PSⅠ in Chloroplasts [J]. J Beijing For Univ, 1997, 19(1): 13 − 20.
    [13] 蔡霞, 王水才, 贺俊芳, 等. 83 K光系统II核心复合物不同激发的荧光光谱学[J]. 光子学报, 2007, 36(6): 1128 − 1132.

    CAI Xia, WANG Shuicai, HE Junfang, et al. Fluorescence spectroscopy of photosystem Ⅱ core complex with different excitation wavelengths at 83 K [J]. Acta Photonica Sin, 2007, 36(6): 1128 − 1132.
    [14] 周伟, 何林文, 陆勤勤, 等. 条斑紫菜类囊体膜蛋白质组双向电泳研究方法[J]. 海洋科学, 2014, 38(3): 63 − 68. doi:  10.11759/hykx20130131002

    ZHOU Wei, HE Linwen, LU Qinqin, et al. Two-dimensional electrophoresis of thylakoid membrane proteome in Porphyra yezoensis [J]. Marine Sci, 2014, 38(3): 63 − 68. doi:  10.11759/hykx20130131002
    [15] 姚洪军, 张汝民, 石玉杰, 等. 豌豆光系统Ⅰ多肽HPCE分离特性的研究[J]. 内蒙古农业大学学报, 2006, 27(1): 38 − 42.

    YAO Hongjun, ZHANG Rumin, SHI Yujie, et al. Isolation of photosystem Ⅰ protein complex and HPCE analysis of their polypeptides [J]. J Inner Mong Agric Univ, 2006, 27(1): 38 − 42.
    [16] 温星, 程路芸, 李丹丹, 等. 毛竹叶片发育过程中光合生理特性的变化特征[J]. 浙江农林大学学报, 2017, 34(3): 437 − 442. doi:  10.11833/j.issn.2095-0756.2017.03.008

    WEN Xing, CHENG Luyun, LI Dandan, et al. Photosynthetic characteristics in the development process of Phyllostachys edulis [J]. J Zhejiang A&F Univ, 2017, 34(3): 437 − 442. doi:  10.11833/j.issn.2095-0756.2017.03.008
    [17] 王星星, 刘琳, 张洁, 等. 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J]. 植物生态学报, 2012, 36(5): 456 − 462.

    WANG Xingxing, LIU Lin, ZHANG Jie, et al. Photosynthetic characteristics in the development process of Phyllostachys edulis [J]. Chin J Plant Ecol, 2012, 36(5): 456 − 462.
    [18] 孙建飞, 翟建云, 马元丹, 等. 毛竹快速生长期茎秆不同节间光合色素和光合酶活性的差异[J]. 植物学报, 2018, 53(6): 773 − 781. doi:  10.11983/CBB17195

    SUN Jianfei, ZHAI Jianyun, MA Yuandan, et al. Differences in photosynthetic pigments and photosynthetic enzyme activities in different internodes of Phyllostachys edulis during rapid growth stage [J]. Chin Bull Bot, 2018, 53(6): 773 − 781. doi:  10.11983/CBB17195
    [19] 程路芸, 温星, 马丹丹, 等. 毛竹快速生长过程中碳水化合物的时空变化[J]. 浙江农林大学学报, 2017, 34(2): 261 − 267. doi:  10.11833/j.issn.2095-0756.2017.02.009

    CHENG Luyun, WEN Xing, MA Dandan, et al. Spatial and temporal change of carbohydrates during rapid growth processes of Phyllostachys edulis [J]. J Zhejiang A&F Univ, 2017, 34(2): 261 − 267. doi:  10.11833/j.issn.2095-0756.2017.02.009
    [20] 翟建云, 孙建飞, 马元丹, 等. 毛竹快速生长期茎秆不同节间碳水化合物代谢的变化[J]. 竹子学报, 2018, 37(1): 42 − 48. doi:  10.3969/j.issn.1000-6567.2018.01.007

    ZHAI Jianyun, SUN Jianfei, MA Yuandan, et al. Changes of carbohydrates metabolism in different internodes of Phyllostachys edulis during rapid growth period [J]. J Bamboo Res, 2018, 37(1): 42 − 48. doi:  10.3969/j.issn.1000-6567.2018.01.007
    [21] CUI Kia, HE Caiyun, ZHANG Jianguo, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo [J]. J Proteome Res, 2012, 11(4): 2492 − 2507. doi:  10.1021/pr2011878
    [22] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nat Gen, 2013, 45: 456 − 461. doi:  10.1038/ng.2569
    [23] ARNON D I. Copper enzymes in isolated chloroplasts: Polyphenol Beta vulgaris [J]. Plant Physiol, 1959, 24(1): 1 − 15.
    [24] LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes [J]. Methods Enzymol, 1989, 148(1): 350 − 382.
    [25] 陈登举, 高培军, 吴兴波, 等. 毛竹茎秆叶绿体超微结构及其发射荧光光谱特征的研究[J]. 植物学报, 2013, 48(6): 635 − 642.

    CHEN Dengju, GAO Peijun, WU Xingbo, et al. Chloroplast ultrastructure and emission fluorescence spectrum characteristics for stems of Phyllostachys edulis [J]. Chin Bull Bot, 2013, 48(6): 635 − 642.
    [26] SCHÄGGER H, von JAGOW G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form [J]. Anal Biochem, 1991, 199(2): 223 − 231. doi:  10.1016/0003-2697(91)90094-A
    [27] RANTALA M, PAAKKARINEN V, ARO E M. Analysis of thylakoid membrane protein complexes by blue native gel electrophoresis [J]. J Visualized Exp, 2018, 139: 1 − 6.
    [28] 杜建芳, 廖祥儒, 叶步青, 等. 光质对油菜幼苗生长及抗氧化酶活性的影响[J]. 植物学报, 2002, 19(6): 743 − 745. doi:  10.3969/j.issn.1674-3466.2002.06.016

    DU Jianfang, LIAO Xiangru, YE Buqing, et al. Effect of light quality on the growth and antioxidant enzyme activities of rape seedings [J]. Chin Bull Bot, 2002, 19(6): 743 − 745. doi:  10.3969/j.issn.1674-3466.2002.06.016
    [29] ALEXANDER G, IVANOV, MARIANNA K, et al. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine [J]. Planta, 2006, 223(6): 1165 − 1177. doi:  10.1007/s00425-005-0164-1
    [30] CARRARA S, PARDOSSI A, SOLDATINI G F, et al. Photosynthetic activity of ripening tomato fruit [J]. Photosynthetica, 2001, 39(1): 75 − 78. doi:  10.1023/A:1012495903093
    [31] RANJAN S, SINGH R, SONI D K, et al. Photosynthetic performance of Jatropha curcas fruits [J]. Plant Physiol Biochem, 2012, 52: 66 − 76. doi:  10.1016/j.plaphy.2011.11.008
    [32] FERRONI L, PANTALEONI L, BALDISSEROTTO C, et al. Low photosynthetic activity is linked to changes in the organization of photosystemⅡ in the fruit of arum italicum [J]. Plant Physiol Biochem, 2013, 63: 140 − 150. doi:  10.1016/j.plaphy.2012.11.023
    [33] BONORA A, PANCALDI S, GUALANDRI R, et al. Carotenoid and ultrastructure variations in plastids of Arum italicum Miller fruit during maturation and ripening [J]. J Exp Bot, 2000, 51(346): 873 − 884. doi:  10.1093/jexbot/51.346.873
    [34] BARBER J. Photosystem Ⅱ: a multisubunit membrane protein that oxidises water [J]. Curr Opinion Struct Biol, 2002, 12(4): 523 − 530. doi:  10.1016/S0959-440X(02)00357-3
    [35] FERREIRA K N, IVERSON T M, MAGHLAOUI K. Architecture of the photosynthetic oxygen-evolving center [J]. Sci, 2004, 303(5665): 1831 − 1838. doi:  10.1126/science.1093087
    [36] KUHLBRANDT W, WANG D N. Atomic model of plant light-harvesting complex by electron crystallography [J]. Nature, 1994, 367: 614 − 621. doi:  10.1038/367614a0
    [37] BARSAN C, ZOUINE M, MAZA E, et al. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components [J]. Plant Physiol, 2012, 160(2): 708 − 725. doi:  10.1104/pp.112.203679
    [38] SMART L B, ANDERSON S L, MCINTOSH L. Targeted genetic inactivation of the photosystem Ⅰ reaction center in the Cyanobacterium synechocystis sp. Pcc 6803 [J]. Embo J, 1992, 10(11): 3289 − 3296.
    [39] LI N, ZHAO J, WARREN P V, et al. PsaD is required for the stable binding of PsaC to the photosystemⅠcore protein of Synechococcus sp. Pcc 6301 [J]. Biochemistry, 1991, 30(31): 7863 − 7872. doi:  10.1021/bi00245a028
    [40] GOVINDJEE E. Sixty-three years since kautsky: chlorophyll a fluorescence [J]. Aus J Physiol, 1995, 22(2): 131 − 160.
    [41] ANDREEVA A, ABAROVA S, STOITCHKOVA K, et al. Selective photobleaching of chlorophylls and carotenoids in photosystem Ⅰ particles under high-light treatment [J]. Photochem Photobiol, 2007, 83(6): 1301 − 1307. doi:  10.1111/j.1751-1097.2007.00136.x
    [42] ANDREEVA A, STOITCHKOVA K, BUSHEVA M, et al. Changes in the energy distribution between chlorophyll-protein complexes of thylakoid membranes from pea mutants with modified pigment content(Ⅰ). changes due to the modified pigment content [J]. J Photochem Photobio B-Biol, 2003, 70(3): 153 − 162. doi:  10.1016/S1011-1344(03)00075-7
    [43] JENNINGS R C, ZUCCHELLI G, CROCE R, et al. The photochemical trapping rate from red spectral states in PSI-LHCI is determined by thermal activation of energy transfer to bulk chlorophylls [J]. Biochim Biophysic Acta, 2003, 1557(1/3): 91 − 98.
    [44] BERTAMINI M, MUTHUCHELIAN K, NEDUNCHEZHIAN N. Shade effect alters leaf pigments and photosynthetic responses in norway spruce (Picea abies) grown under field conditions [J]. Photosynthetica, 2006, 44(2): 227 − 234. doi:  10.1007/s11099-006-0011-z
    [45] 蔡霞, 王水才, 贺俊芳, 等. 温度对PSⅡ CP47/D1/D2/Cyt b559复合物荧光光谱特性的影响[J]. 光子学报, 2003, 32(7): 853 − 855.

    CAI Xia, WANG Shuicai, HE Junfang, et al. Effect of temperature on the fluorescence spectrum characteristics of the PSⅡ reaction center CP47/D1/D2/Cyt b559 complex [J]. Acta Photonica Sin, 2003, 32(7): 853 − 855.
  • [1] 卜柯丽, 傅卢成, 王灵杰, 栗青丽, 王柯杨, 马元丹, 高岩, 张汝民.  毛竹茎秆快速生长期PeATG1/PeATG4基因表达分析 . 浙江农林大学学报, 2020, 37(1): 43-50. doi: 10.11833/j.issn.2095-0756.2020.01.006
    [2] 李媛媛, 张双燕, 王传贵, 方徐勤.  毛竹采伐剩余物的化学成分、纤维形态及纸浆性能 . 浙江农林大学学报, 2019, 36(2): 219-226. doi: 10.11833/j.issn.2095-0756.2019.02.002
    [3] 王柯杨, 卜柯丽, 马元丹, 栗青丽, 王灵杰, 高岩, 高海波, 张汝民.  毛竹茎秆发育过程中不同节间叶绿素荧光的变化 . 浙江农林大学学报, 2019, 36(4): 697-703. doi: 10.11833/j.issn.2095-0756.2019.04.009
    [4] 周哲宇, 徐超, 胡策, 王海湘, 梁谢恩, 张汝民, 温国胜.  毛竹快速生长期的叶绿素荧光参数特征 . 浙江农林大学学报, 2018, 35(1): 75-80. doi: 10.11833/j.issn.2095-0756.2018.01.010
    [5] 李秀云, 陈晓沛, 徐英武, 曹友志.  毛竹生长过程中纤维素合成酶基因的时空表达和功能预测 . 浙江农林大学学报, 2017, 34(4): 565-573. doi: 10.11833/j.issn.2095-0756.2017.04.001
    [6] 张磊, 谢锦忠, 张玮, 冀琳珂, 陈胜, 丁中文.  模拟干旱环境下毛竹对伐桩注水的生理响应 . 浙江农林大学学报, 2017, 34(4): 620-628. doi: 10.11833/j.issn.2095-0756.2017.04.007
    [7] 李黎, 宋帅杰, 方小梅, 杨丽芝, 邵珊璐, 应叶青.  高温干旱及复水对毛竹实生苗保护酶和脂质过氧化的影响 . 浙江农林大学学报, 2017, 34(2): 268-275. doi: 10.11833/j.issn.2095-0756.2017.02.010
    [8] 吴兴波, 陈登举, 马元丹, 高岩, 温国胜, 张汝民.  氯霉素对毛竹幼苗色素质量分数及叶绿素荧光的影响 . 浙江农林大学学报, 2016, 33(2): 209-215. doi: 10.11833/j.issn.2095-0756.2016.02.004
    [9] 付双双, 徐秀英, 吴伟光.  林农毛竹生产效率及其影响因素 . 浙江农林大学学报, 2015, 32(4): 596-602. doi: 10.11833/j.issn.2095-0756.2015.04.016
    [10] 黄梦雪, 张文标, 张晓春, 余文军, 李文珠, 刘贤淼, 戴春平, 汪孙国.  毛竹材玻璃化转变温度的影响因素 . 浙江农林大学学报, 2015, 32(6): 897-902. doi: 10.11833/j.issn.2095-0756.2015.06.011
    [11] 王超莉, 张智俊, 屈亚平, 王蕾.  毛竹丙酮酸磷酸双激酶调节蛋白基因克隆、原核表达及纯化 . 浙江农林大学学报, 2015, 32(5): 749-755. doi: 10.11833/j.issn.2095-0756.2015.05.014
    [12] 张凤雪, 徐英武, 张智俊, 肖冬长, 王超莉, 屈亚平.  毛竹KDO8PS的原核表达纯化及晶体生长 . 浙江农林大学学报, 2014, 31(4): 515-520. doi: 10.11833/j.issn.2095-0756.2014.04.004
    [13] 李蓓蕾, 宋照亮, 姜培坤, 周国模, 李自民.  毛竹林生态系统植硅体的分布及其影响因素 . 浙江农林大学学报, 2014, 31(4): 547-553. doi: 10.11833/j.issn.2095-0756.2014.04.009
    [14] 邵继锋, 桂仁意, 季海宝, 李国栋, 方伟.  毛竹实生苗水培体系初步建立 . 浙江农林大学学报, 2011, 28(1): 86-94. doi: 10.11833/j.issn.2095-0756.2011.01.014
    [15] 林琼影, 陈建新, 杨淑贞, 温国胜.  毛竹气体交换特征 . 浙江农林大学学报, 2008, 25(4): 522-526.
    [16] 徐秋芳, 姜培坤.  有机肥对毛竹林间及根区土壤生物化学性质的影响 . 浙江农林大学学报, 2000, 17(4): 364-368.
    [17] 袁亚平, 萧江华, 陈汉林, 朱文圣.  毛竹林新型经营模式 . 浙江农林大学学报, 1999, 16(3): 270-273.
    [18] 毛日耀, 吕文柳, 陆龙根.  毛竹液的采集及保鲜方法` . 浙江农林大学学报, 1996, 13(3): 367-369.
    [19] 李启良, 许大明, 吴军寿, 吴春霞, 张卓文.  低产毛竹林改造技术及其效果 . 浙江农林大学学报, 1995, 12(1): 114-118.
    [20] 楼崇, 刘成林.  毛竹质量生长的研究 . 浙江农林大学学报, 1994, 11(3): 269-273.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190398

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020/4/1

计量
  • 文章访问数:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2020-03-01

毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析

doi: 10.11833/j.issn.2095-0756.20190398
    基金项目:  国家自然科学基金资助项目(31570686,30972397,31470704)
    作者简介:

    傅卢成,从事植物生理生化研究。E-mail: 2292435933@qq.com

    通信作者: 高培军,副教授,博士,从事竹林培育与利用。E-mail: 316919866@qq.com
  • 中图分类号: Q946.1

摘要:   目的  探讨毛竹Phyllostachys edulis笋竹茎秆的光合特性和光系统的发育情况。  方法  以当年生毛竹叶片和笋竹茎秆为材料,采用蓝绿温和胶电泳(BN-PAGE)分析茎秆和叶片类囊体膜蛋白,同时测定了光合色素含量和77 K低温荧光发射光谱。  结果  茎秆叶绿素和类胡萝卜素质量分数显著低于叶片(P<0.01),随着茎秆发育,叶绿素和类胡萝卜素质量分数显著升高。茎秆和叶片类囊体膜PSⅡ核心复合物较完整,捕光色素较多;叶片和茎秆基部PSⅠ核心复合物分离主要得到PsaA/B和PsaD亚基,茎秆中部得到PsaA/B,茎秆顶部未发现PsaA/B。叶片和茎秆77 K低温荧光发射光谱在685和745 nm处有2个明显主峰,四阶导数光谱出现6个极大值,主要是PSⅡ和PSⅠ核心复合物的荧光发射峰以及由PSⅡ外周捕光天线(LHCⅡ)、PSⅡ内周捕光天线(CP47)、PSⅡ内周捕光天线(CP43)、PSⅠ反应中心复合体(RCI)、PSⅠ捕光天线(LHCⅠ)的发射荧光峰引起的肩峰,其中茎秆顶部LHCⅡ和PSⅡ核心复合体的特征发射峰与叶片相比有明显蓝移现象。  结论  毛竹茎秆中PSⅡ核心复合体已形成,随着茎秆发育,笋衣逐渐脱落,色素大量合成,内周天线蛋白CP47和CP43以及外周捕光天线蛋白逐渐形成;同时,茎秆受到光照后PSⅠ核心蛋白PsaA和PsaB开始形成,逐渐组装合成PSⅠ核心复合体。图4表2参45

English Abstract

傅卢成, 卜柯丽, 王灵杰, 栗青丽, 高培军, 高岩, 张汝民. 毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190398
引用本文: 傅卢成, 卜柯丽, 王灵杰, 栗青丽, 高培军, 高岩, 张汝民. 毛竹茎秆快速生长期类囊体膜蛋白复合物BN-PAGE分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190398
FU Lucheng, BU Keli, WANG Lingjie, LI Qingli, GAO Peijun, GAO Yan, ZHANG Rumin. BN-PAGE analysis of thylakoid membrane protein complex during rapid growth of Phyllostachys edulis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190398
Citation: FU Lucheng, BU Keli, WANG Lingjie, LI Qingli, GAO Peijun, GAO Yan, ZHANG Rumin. BN-PAGE analysis of thylakoid membrane protein complex during rapid growth of Phyllostachys edulis[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190398

返回顶部

目录

    /

    返回文章
    返回