留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桂花己糖激酶基因家族成员的序列及表达分析

庞天虹 钱婕妤 付建新 顾翠花 张超

庞天虹, 钱婕妤, 付建新, 顾翠花, 张超. 桂花己糖激酶基因家族成员的序列及表达分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200370
引用本文: 庞天虹, 钱婕妤, 付建新, 顾翠花, 张超. 桂花己糖激酶基因家族成员的序列及表达分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200370
PANG Tianhong, QIAN Jieyu, FU Jianxin, GU Cuihua, ZHANG Chao. Sequence and expression analysis of hexokinase gene family members in Osmanthus fragrans[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200370
Citation: PANG Tianhong, QIAN Jieyu, FU Jianxin, GU Cuihua, ZHANG Chao. Sequence and expression analysis of hexokinase gene family members in Osmanthus fragrans[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200370

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

桂花己糖激酶基因家族成员的序列及表达分析

doi: 10.11833/j.issn.2095-0756.20200370
基金项目: 浙江省基础公益研究计划项目(LY19C160002,LY19C160006)
详细信息
    作者简介: 庞天虹,从事观赏植物遗传育种研究。E-mail: 1051369239@qq.com
    通信作者: 张超,副教授,博士,从事观赏植物遗传育种。E-mail: zhangc@zafu.edu.cn
  • 中图分类号: S685.13

Sequence and expression analysis of hexokinase gene family members in Osmanthus fragrans

  • 摘要:   目的  研究桂花Osmanthus fragrans己糖激酶家族成员序列特征及表达变化规律。  方法  选取3个不同花色桂花品种‘堰虹桂’O. fragrans ‘Yanhong Gui’、‘玉玲珑’O. fragrans ‘Yulinglong’、‘金球桂’O. fragrans ‘Jinqiu Gui’,从转录组数据中筛选得到HXK同源基因,进行序列分析和系统进化树分析,并利用实时荧光定量PCR检测不同品种桂花不同组织及不同发育阶段的OfHXKs基因表达情况。  结果  筛选得到OfHXK1~OfHXK4基因,分析表明不同品种桂花OfHXK1、OfHXK3和OfHXK4基因核苷酸序列相似性均高于99%。OfHXKs基因编码461~510个氨基酸残基,均包含2个保守的磷酸化作用位点和1个糖结合位点。OfHXK1和OfHXK2具有N端膜锚定结构,与拟南芥Arabidopsis thaliana AtHXK1与AtHXK2聚为一支;无跨膜区域的OfHXK3与AtHXK3亲缘关系较近,推测二者具有催化作用但无糖信号传导功能;OfHXK4蛋白腺苷结合位点处多出11个氨基酸残基,与AtHKL1和AtHKL2亲缘关系较近。4个桂花HXK基因成员在桂花1年生茎、2年生茎、嫩叶、成熟叶和花序中均有表达。随着花开放的进程,整体上OfHXK1、OfHXK3和OfHXK4基因的表达量呈现先上升后下降的趋势,而OfHXK2基因在3个品种花序发育过程中表达模式不同。  结论  根据序列分析与进化树分析,推测桂花OfHXK1~OfHXK4均具有催化己糖磷酸化的功能,OfHXK1和OfHXK2具有糖信号感知和转导的功能。OfHXK1、OfHXK3和OfHXK4基因随花序发育呈现有规律升降的表达模式,可能与其参与糖类物质代谢有关。图6表4参30
  • 图  1  桂花OfHXKs氨基酸多序列比对图

    下划线为磷酸化位点与底物结合位点;C为疏水通道氨基酸;+为保守的甘氨酸残基;*为其他保守残基

    Figure  1  Multiple sequence alignment of OfHXKs amino acid sequences

    图  2  桂花OfHXKs蛋白跨膜区段预测

    Figure  2  Prediction of transmembrane protein segment of OfHXKs

    图  3  桂花OfHXKs蛋白质三级结构预测

    Figure  3  Prediction of tertiary structures of OfHXK proteins in O. fragrans

    图  4  桂花花瓣OfHXKs和拟南芥AtHXKs蛋白质系统进化树分析图

    Figure  4  Phylogenetic tree of HXK proteins in O. fragrance and Arabidopsis

    图  5  各品种桂花不同发育时期花序OfHXKs基因相对表达量变化

    Figure  5  Expression changes of OfHXK genes during different inflorescence of different O. fragrans cultivars

    图  6  ‘堰虹桂’不同组织中OfHXKs基因表达量变化

    Figure  6  Expression changes of OfHXK genes during different tissues of O. fragrans ‘Yanhong Gui’

    表  1  OfHXKs基因表达分析所用引物序列

    Table  1.   Primer sequences of OfHXK genes of O. fragrans

    基因名称正向引物序列(5’→3’)反向引物序列(5’→3’)
    OfHXK1TTCTTCTTCGTCTGGCGTTCTGGTGCATTAACCCGCATATCCAGG
    OfHXK2ACCTCCCTAAAAACAAGGAGAGTTGAGTATCCCGTCCCATTTTCTTTAGG
    OfHXK3CACTTATTTGGTCACTCAGTTCCCGACACACGTCTATGACAATCTTCCTC
    OfHXK4GCACTCATTGCAGCCTCTCACTCTCACTCTGACAGTGACCGGCGTTA
    OfACTCCCAAGGCAAACAGAGAAAAAATACCCCACTACCAGAATCAAGAA
    下载: 导出CSV

    表  2  桂花OfHXKs核苷酸相似性比较表

    Table  2.   Comparison of nucleotide sequences of OfHXKs in O. fragrans

    基因名称相似性/%
    OfHXK1-YHGOfHXK1-YLLOfHXK1-JQGOfHXK2-YHGOfHXK2-YLLOfHXK2-JQGOfHXK3-YHGOfHXK3-YLLOfHXK3-JQGOfHXK4-YHGOfHXK4-YLLOfHXK4-JQG
    OfHXK1-YHG100.00
    OfHXK1-YLL99.87100.00
    OfHXK1-JQG99.87100.00100.00
    OfHXK2-YHG72.2672.1972.19100.00
    OfHXK2-YLL72.2172.1472.1494.42100.00
    OfHXK2-JQG71.6271.5571.5595.4098.26100.00
    OfHXK3-YHG58.3858.4558.4559.9058.3758.03100.00
    OfHXK3-YLL58.3858.4558.4559.8358.3057.9699.73100.00
    OfHXK3-JQG58.3858.4558.5859.6258.2357.8399.1999.33100.00
    OfHXK4-YHG59.3759.3759.3758.2958.6758.2852.5452.6152.40100.00
    OfHXK4-YLL59.6359.6359.6358.8658.6658.4452.6552.7352.5099.71100.00
    OfHXK4-JQG59.7059.7059.7058.2258.5358.1452.3452.4052.2099.0299.28100.00
    下载: 导出CSV

    表  3  桂花OfHXKs蛋白质基本理化信息

    Table  3.   Information of OfHXK proteins in O. fragrans

    蛋白质相对分子量理论等电点氨基酸数目/个正电荷负电荷不稳定系数总平均亲水指数信号肽亚细胞定位
    OfHXK153881.095.41498536637.030.055细胞质
    OfHXK254328.405.91501556234.73−0.077细胞质
    OfHXK353812.815.99495645937.25−0.023叶绿体
    OfHXK455894.386.58510616346.37−0.042线粒体
    下载: 导出CSV

    表  4  桂花花瓣OfHXKs蛋白质二级结构预测

    Table  4.   Secondary structures of OfHXK proteins in O. fragrans

    蛋白质α-螺旋β-转角无规则卷曲延伸链
    氨基酸数目/个占比/%氨基酸数目/个占比/%氨基酸数目/个占比/%氨基酸数目/个占比/%
    OfHXK123947.99316.2216232.536613.25
    OfHXK224148.10326.3916332.536512.97
    OfHXK320842.02316.2618837.986813.74
    OfHXK422343.73265.1018235.697915.49
    下载: 导出CSV
  • [1] FU Jianxin, HOU Dan, WANG Yiguang, et al. Identification of floral aromatic volatile compounds in 29 cultivars from four groups of Osmanthus fragrans by gas chromatography-mass spectrometry [J]. Hortic Environ Biotechnol, 2019, 60(5): 611 − 623.
    [2] WANG Yiguang, ZHANG Chao, DONG Bin, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans [J]. Front Plant Sci, 2018, 9: 1499. doi:  10.3389/fpls.2018.01499
    [3] GRANOT D. Role of tomato hexose kinases [J]. Funct Plant Biol, 2007, 34(6): 564 − 570. doi:  10.1071/FP06207
    [4] 程建徽, 谢鸣, 蒋桂华, 等. 植物己糖激酶的信号转导作用[J]. 细胞生物学杂志, 2004, 26(6): 50 − 54.

    CHENG Jianhui, XIE Ming, JIANG Guihua, et al. The signaling role of hexokinase in plants [J]. Chin J Cell Biol, 2004, 26(6): 50 − 54.
    [5] WANG Xufeng, LI L M, YANG P P, et al. The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes [J]. Plant Cell Rep, 2014, 33(2): 337 − 347. doi:  10.1007/s00299-013-1533-z
    [6] KARVE R, LAURIA M, VIRNIG A, et al. Evolutionary lineages and functional diversification of plant hexokinases [J]. Mol Plant, 2010, 3(2): 334 − 346. doi:  10.1093/mp/ssq003
    [7] 张超, 王彦杰, 付建新, 等. 高等植物己糖激酶基因研究进展[J]. 生物技术通报, 2012, 28(4): 19 − 26.

    ZHANG Chao, WANG Yanjie, FU Jianxin, et al. Research advances in the hexokinase gene family in higher plant [J]. Biotechnol Bull, 2012, 28(4): 19 − 26.
    [8] CHO J, RYOO N, KO S, et al. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.) [J]. Planta, 2006, 224(3): 598 − 611. doi:  10.1007/s00425-006-0251-y
    [9] WANG Jingxue, WANG Xiaomin, GENG Siyu, et al. Correction to: genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization [J]. Planta, 2018, 248(1): 171 − 182. doi:  10.1007/s00425-018-2888-8
    [10] KARNE A, RAUH B L, XIA X, et al. Expression and evolutionary features of the hexokinase gene family in Arabidopsis [J]. Planta, 2008, 228(3): 411 − 425. doi:  10.1007/s00425-008-0746-9
    [11] KANDELKFIR M, DAMARIWEISSLER H, GERMAN M A, et al. Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization [J]. Planta, 2006, 224(6): 1341 − 1352. doi:  10.1007/s00425-006-0318-9
    [12] JANG J, LEON P, ZHOU L, et al. Hexokinase as a sugar sensor in higher plants [J]. Plant Cell, 1997, 9(1): 5 − 19.
    [13] MOORE B D, ZHOU L, ROLLAND F, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling [J]. Science, 2003, 300(5617): 332 − 336. doi:  10.1126/science.1080585
    [14] ZHOU L, JANG J, JONES T L, et al. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant [J]. Proc Nat Acad Sci USA, 1998, 95(17): 10294 − 10299. doi:  10.1073/pnas.95.17.10294
    [15] PEGO J V, WEISBEEK P, SMEEKENS S, et al. Mannose inhibits arabidopsis germination via a hexokinase-mediated step [J]. Plant Physiol, 1999, 119(3): 1017 − 1023. doi:  10.1104/pp.119.3.1017
    [16] ZHENG Yanjun, TIAN Li, LIU Hongtao, et al. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries [J]. Plant Growth Regul, 2009, 58(3): 251 − 260. doi:  10.1007/s10725-009-9373-0
    [17] MIAO Huiying, WEI Jia, ZHAO Yanting, et al. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis [J]. J Exp Bot, 2013, 64(4): 1097 − 1109. doi:  10.1093/jxb/ers399
    [18] 向其柏, 刘玉莲. 中国桂花品种图志[M]. 杭州: 浙江科学技术出版社, 2008.
    [19] ZHANG Chao, FU Jianxin, WANG Yiguang, et al. Identification of suitable reference genes for gene expression normalization in the quantitative real-time PCR analysis of sweet Osmanthus (Osmanthus fragrans Lour.) [J]. PLoS One, 2015, 10(8): 1 − 17.
    [20] 秦巧平, 张上隆, 徐昌杰. 己糖激酶与植物生长发育[J]. 植物生理学报, 2003, 39(1): 1 − 8.

    QIN Qiaoping, ZHANG Shanglong, XU Changjie. Hexokinase and development of plants [J]. Plant Physiol, 2003, 39(1): 1 − 8.
    [21] HALFORD N G, PURCELL P C, HARDIE D G, et al. Is hexokinase really a sugar sensor in plants [J]. Trends Plant Sci, 1999, 4(3): 117 − 120. doi:  10.1016/S1360-1385(99)01377-1
    [22] PERATA P, MATSUKURA C, VERNIERI P, et al. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos [J]. Plant Cell, 1997, 9(12): 2197 − 2208. doi:  10.2307/3870579
    [23] GRANOT D, DAVIDSCHWARTZ R, KELLY G, et al. Hexose kinases and their role in sugar-sensing and plant development [J]. Front Plant Sci, 2013, 4: 44.
    [24] ZHANG Chao, ZHANG Lili, FU Jianxin, et al. Isolation and characterization of hexokinase genes PsHXK1 and PsHXK2 from tree peony (Paeonia suffruticosa Andrews) [J]. Mol Biol Rep, 2020, 47(1): 327 − 336. doi:  10.1007/s11033-019-05135-5
    [25] HU Dagang, SUN Cuihui, ZHANG Quanyan, et al. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple [J]. PLoS Genet, 2016, 12(8): e1006273. doi:  10.1371/journal.pgen.1006273
    [26] OLSSON T, THELANDER M, RONNE H. A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens [J]. J Biol Chem, 2003, 278(45): 44439 − 44447. doi:  10.1074/jbc.M306265200
    [27] MINET M, DUFOUR M, LACROUTE F, et al. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs [J]. Plant J, 1992, 2(3): 417 − 422.
    [28] 李浩霞, 杨斌, 尹跃, 等. 枸杞己糖激酶基因LbHXK的克隆及表达分析[J]. 西北植物学报, 2019, 39(6): 1009 − 1015.

    LI Haoxia, YANG Bin, YIN Yue, et al. Cloning and expression analysis of hexokinase gene (LbHXK) from wolfberry (Lycium barbarum Linn.) [J]. Acta Bot Boreali-Occident Sin, 2019, 39(6): 1009 − 1015.
    [29] 赵锦, 孙美红, 胡大刚, 等. 苹果己糖激酶基因MdHXK1的克隆与表达分析[J]. 园艺学报, 2015, 42(8): 1437 − 1447.

    ZHAO Jin, SUN Meihong, HU Dagang, et al. Molecular cloning and expression analysis of a hexokinase gene MdHXK1 in apple [J]. Acta Hortic Sin, 2015, 42(8): 1437 − 1447.
    [30] 张超. 葡萄糖调控牡丹切花花青素苷合成的分子机理[D]. 北京: 北京林业大学, 2014.

    ZHANG Chao. Molecular Mechanism of Glucose Regulating Anthocyanin Biosynthesis of Tree Peony Cut Flower[D]. Beijing: Beijing Forestry University, 2014.
  • [1] 娄永峰, 高志民.  毛竹早期光诱导蛋白基因克隆及功能分析 . 浙江农林大学学报, 2021, 38(1): 93-102. doi: 10.11833/j.issn.2095-0756.20200237
    [2] 缪云锋, 周丹, 董彬, 赵宏波.  桂花OfNAC转录因子鉴定及在花开放阶段的表达分析 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200474
    [3] 吴琪, 吴鸿飞, 周敏舒, 徐倩霞, 杨丽媛, 赵宏波, 董彬.  桂花OfFCA基因的克隆及在花芽分化时期的表达分析 . 浙江农林大学学报, 2020, 37(2): 195-200. doi: 10.11833/j.issn.2095-0756.2020.02.001
    [4] 王千千, 蒋琦妮, 付建新, 董彬, 赵宏波.  不同光周期和温度处理下桂花内参基因的筛选 . 浙江农林大学学报, 2019, 36(5): 928-934. doi: 10.11833/j.issn.2095-0756.2019.05.011
    [5] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [6] 刘玉成, 王艺光, 张超, 董彬, 付建新, 胡绍庆, 赵宏波.  桂花OfCCD1基因启动子克隆与表达特性 . 浙江农林大学学报, 2018, 35(4): 596-603. doi: 10.11833/j.issn.2095-0756.2018.04.003
    [7] 武丹阳, 杨洋, 李慧玉.  3个白桦BpBEE基因的克隆与表达分析 . 浙江农林大学学报, 2017, 34(1): 137-144. doi: 10.11833/j.issn.2095-0756.2017.01.019
    [8] 李冰冰, 刘国峰, 魏书, 黄龙全, 张剑韵.  烟草NtPLR1基因克隆与表达分析 . 浙江农林大学学报, 2017, 34(4): 581-588. doi: 10.11833/j.issn.2095-0756.2017.04.003
    [9] 付建新, 张超, 王艺光, 赵宏波.  桂花组织基因表达中荧光定量PCR内参基因的筛选 . 浙江农林大学学报, 2016, 33(5): 727-733. doi: 10.11833/j.issn.2095-0756.2016.05.001
    [10] 屈亚平, 张智俊, 王超莉, 王蕾, 吴林军.  毛竹阿拉伯糖-5-磷酸异构酶的基因克隆、原核表达及纯化 . 浙江农林大学学报, 2016, 33(6): 928-934. doi: 10.11833/j.issn.2095-0756.2016.06.002
    [11] 赵婷, 韩小娇, 刘明英, 乔桂荣, 蒋晶, 姜彦成, 卓仁英.  东南景天耐镉相关基因SaFer的克隆与功能初步分析 . 浙江农林大学学报, 2015, 32(1): 25-32. doi: 10.11833/j.issn.2095-0756.2015.01.004
    [12] 赵传慧, 周厚君, 童再康, 林二培, 黄华宏, 牛明月.  光皮桦成花相关MADS-box基因BlMADS1的克隆与表达 . 浙江农林大学学报, 2015, 32(2): 221-228. doi: 10.11833/j.issn.2095-0756.2015.02.008
    [13] 侯传明, 郑雅文, 王正加, 徐英武.  山核桃MADS-like基因的克隆与分析 . 浙江农林大学学报, 2015, 32(1): 33-39. doi: 10.11833/j.issn.2095-0756.2015.01.005
    [14] 王超莉, 张智俊, 屈亚平, 王蕾.  毛竹丙酮酸磷酸双激酶调节蛋白基因克隆、原核表达及纯化 . 浙江农林大学学报, 2015, 32(5): 749-755. doi: 10.11833/j.issn.2095-0756.2015.05.014
    [15] 庞景, 童再康, 黄华宏, 林二培, 刘琼瑶.  杉木纤维素合成酶基因CesA的克隆及表达分析 . 浙江农林大学学报, 2015, 32(1): 40-46. doi: 10.11833/j.issn.2095-0756.2015.01.006
    [16] 沈辰, 裘佳妮, 黄坚钦.  山核桃COP1 E3连接酶的全长克隆及表达分析 . 浙江农林大学学报, 2014, 31(6): 831-837. doi: 10.11833/j.issn.2095-0756.2014.06.002
    [17] 宋敏国, 袁进强, 杨仙玉, 张姝芳, 诸葛慧, 徐跃.  日本蟾蜍皮肤胸腺素α原cDNA的克隆及序列分析 . 浙江农林大学学报, 2013, 30(3): 401-405. doi: 10.11833/j.issn.2095-0756.2013.03.016
    [18] 杨希宏, 黄有军, 陈芳芳, 黄坚钦.  山核桃FLOWERING LOCUS C同源基因鉴定与表达分析 . 浙江农林大学学报, 2013, 30(1): 1-8. doi: 10.11833/j.issn.2095-0756.2013.01.001
    [19] 王国立, 安华明, 秦巧平, 李孟娇, 刘真真, 陈佳莹, 周倩, 张岚岚.  柑橘果实成熟特异基因CsPMEI/InvI的克隆与序列分析 . 浙江农林大学学报, 2013, 30(3): 336-342. doi: 10.11833/j.issn.2095-0756.2013.03.005
    [20] 黄程前, 宋丽青, 童再康, 程龙军.  光皮桦BlFTL基因的克隆和表达模式 . 浙江农林大学学报, 2013, 30(3): 343-349. doi: 10.11833/j.issn.2095-0756.2013.03.006
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200370

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021//1

计量
  • 文章访问数:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-09
  • 修回日期:  2020-08-02

桂花己糖激酶基因家族成员的序列及表达分析

doi: 10.11833/j.issn.2095-0756.20200370
    基金项目:  浙江省基础公益研究计划项目(LY19C160002,LY19C160006)
    作者简介:

    庞天虹,从事观赏植物遗传育种研究。E-mail: 1051369239@qq.com

    通信作者: 张超,副教授,博士,从事观赏植物遗传育种。E-mail: zhangc@zafu.edu.cn
  • 中图分类号: S685.13

摘要:   目的  研究桂花Osmanthus fragrans己糖激酶家族成员序列特征及表达变化规律。  方法  选取3个不同花色桂花品种‘堰虹桂’O. fragrans ‘Yanhong Gui’、‘玉玲珑’O. fragrans ‘Yulinglong’、‘金球桂’O. fragrans ‘Jinqiu Gui’,从转录组数据中筛选得到HXK同源基因,进行序列分析和系统进化树分析,并利用实时荧光定量PCR检测不同品种桂花不同组织及不同发育阶段的OfHXKs基因表达情况。  结果  筛选得到OfHXK1~OfHXK4基因,分析表明不同品种桂花OfHXK1、OfHXK3和OfHXK4基因核苷酸序列相似性均高于99%。OfHXKs基因编码461~510个氨基酸残基,均包含2个保守的磷酸化作用位点和1个糖结合位点。OfHXK1和OfHXK2具有N端膜锚定结构,与拟南芥Arabidopsis thaliana AtHXK1与AtHXK2聚为一支;无跨膜区域的OfHXK3与AtHXK3亲缘关系较近,推测二者具有催化作用但无糖信号传导功能;OfHXK4蛋白腺苷结合位点处多出11个氨基酸残基,与AtHKL1和AtHKL2亲缘关系较近。4个桂花HXK基因成员在桂花1年生茎、2年生茎、嫩叶、成熟叶和花序中均有表达。随着花开放的进程,整体上OfHXK1、OfHXK3和OfHXK4基因的表达量呈现先上升后下降的趋势,而OfHXK2基因在3个品种花序发育过程中表达模式不同。  结论  根据序列分析与进化树分析,推测桂花OfHXK1~OfHXK4均具有催化己糖磷酸化的功能,OfHXK1和OfHXK2具有糖信号感知和转导的功能。OfHXK1、OfHXK3和OfHXK4基因随花序发育呈现有规律升降的表达模式,可能与其参与糖类物质代谢有关。图6表4参30

English Abstract

庞天虹, 钱婕妤, 付建新, 顾翠花, 张超. 桂花己糖激酶基因家族成员的序列及表达分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200370
引用本文: 庞天虹, 钱婕妤, 付建新, 顾翠花, 张超. 桂花己糖激酶基因家族成员的序列及表达分析[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200370
PANG Tianhong, QIAN Jieyu, FU Jianxin, GU Cuihua, ZHANG Chao. Sequence and expression analysis of hexokinase gene family members in Osmanthus fragrans[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200370
Citation: PANG Tianhong, QIAN Jieyu, FU Jianxin, GU Cuihua, ZHANG Chao. Sequence and expression analysis of hexokinase gene family members in Osmanthus fragrans[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200370

返回顶部

目录

    /

    返回文章
    返回