-
桂花Osmanthus fragrans是中国十大名花之一,深受人们喜爱。前人研究报道桂花花香主要成分为α-紫罗兰酮、β-紫罗兰酮、芳樟醇及其氧化物、罗勒烯等挥发性物质[1],而桂花花色主要成分是类胡萝卜素化合物[2]。桂花的花香和花色是其最主要的观赏性状,与花香和花色相关次生代谢物质的合成与积累直接影响到桂花的观赏品质。植物呼吸作用不仅提供植物所需的能量,一系列的中间产物还为多种次生代谢化合物合成提供原料,在植物体内有机物转变方面起到枢纽作用。已糖激酶(hexokinase,HXK)具有己糖磷酸化功能,经HXK磷酸化的己糖才能进行植物呼吸代谢的糖酵解途径,为植物生长和发育提供能量和中间代谢产物[3-6]。高等植物HXK基因以多基因家族形式存在[7-11]。拟南芥Arabidopsis thaliana的6个HXK家族成员中,AtHXK1~3能磷酸化葡萄糖[10],其中AtHXK1还具有感知和传递己糖信号的功能[12-13]。AtHXK1在强光条件下对植物根、叶和花序的生长和发育有促进作用[13]。此外,拟南芥成花转变[14]和种子萌发[15]、植物花青素积累[16]和脂肪族硫甙生物合成[17]等植物生命活动都与HXK介导的己糖信号转导息息相关。目前,未见桂花HXK基因功能有关的研究报道。本研究基于桂花不同花色品种转录组数据筛选OfHXKs相关Unigene序列,分析不同OfHXKs基因家族成员核苷酸序列及其编码的氨基酸序列,并与其他物种HXK蛋白进行多重比对和进化树分析,同时分析不同桂花品种不同发育阶段花瓣以及不同组织中OfHXKs基因表达特征,为进一步揭示桂花不同OfHXKs基因成员功能奠定理论基础。
-
选择浙江农林大学桂花资源圃生长状况良好的地栽桂花‘堰虹桂’Osmanthus fragrans ‘Yanhong Gui’(YHG)、‘玉玲珑’O. fragrans ‘Yulinglong’(YLL)、‘金球桂’O. fragrans ‘Jinqiu Gui’(JQG)为材料,依据桂花花序不同发育阶段[18],对这3个桂花品种顶壳期(S1)、铃梗期(S2)、初开期(S3)、盛开期(S4)花瓣分别进行取样,取样时间均为10:00。同时还对‘堰虹桂’1年生茎、2年生茎、嫩叶、成熟叶和盛开时花序进行取样,用于不同组织中OfHXKs基因表达分析。用液氮速冻暂存样品,后存于−80 ℃冰箱。
-
RNA提取试剂盒采用RNAprep Pure Plant Kit(天根,北京);反转录试剂盒使用PrimeScript™ RT Master Mix(Perfect Real Time)(Takara,大连);荧光定量试剂盒使用TB Green® Premix Ex Taq™ Ⅱ(Tli RNaseH Plus)(Takara,大连)。实时荧光定量PCR仪为 LightCycler®480 Ⅱ(Roche,德国)。
-
从转录组中筛选得到HXK相关的Unigene序列,首先使用美国国家生物信息中心(NCBI)数据库中的BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)对得到的基因序列进行对比;利用ORF FINDER (https://www.ncbi.nlm.nih.gov/orffinder/)寻找开放阅读框;用DNAMAN 6.0软件对不同品种相同HXK基因成员进行核苷酸相似性比较,使用‘堰虹桂’的4个HXK基因成员序列开展后续序列分析,包括应用Prot-Param在线软件(http://web.expasy.org/protparam/)预测所编码蛋白的分子量、理论等电点(PI)、不稳定系数、总平均亲水性等;使用YLoc (https://abi-services.informatik.uni-tuebingen.de/yloc/webloc.cgi)进行亚细胞定位预测;使用SOPMA分析软件(https://npsa-prabi.ibcp.fr/cgi-bin/secpred_sopma.pl)对OfHXKs家族的蛋白序列进行二级结构预测分析,判断目的基因的氨基酸残基是否处于于α-螺旋、β折叠(或其他状态)的二级结构;用SWISS-MODEL (https://swissmodel.expasy.org/)预测OfHXKs的三级结构;应用SignalP 5.0 (http://www.cbs.dtu.dk/services/SignalP/)对信号肽进行预测;利用TMHMM在线软件(http://www.cbs.dtu.dk/services/TMHMM/)预测分析桂花蛋白的跨膜结构;使用NetPhos 3.1 Server (http://www.cbs.dtu.dk/services/NetPhos/)对桂花花瓣OfHXKs蛋白质磷酸化位点进行预测;采用MEGAX软件中的邻位相邻法(neighbor-joining,NJ)进行同源聚类,建立系统发育树,并采用Bootstrap法(重复1 000次)评估检测系统进化树。
-
采用RNAprep pure Plant Kit(天根,北京)多糖多酚植物总RNA提取试剂盒按照说明书步骤提取各样品的总RNA。使用紫外分光光度计和质量浓度为1%琼脂糖凝胶电泳检测总RNA浓度和质量。反转录体系为总RNA 1.0 μL,5×PrimeScript RT Master Mix(TaKara,大连)2.0 μL,无RNA酶双蒸水7.0 μL,PCR反应的程序设定为:37 ℃ 15 min,85 ℃ 5 s,4 ℃ 1 min。反转录合成的cDNA储存于−20 ℃备用。
-
根据荧光定量PCR引物设计原则利用Primer Premier 5进行引物设计,以桂花OfACT为内参基因[19],引物序列见表1。荧光定量PCR反应体系为:TB Green Premix Ex Taq Ⅱ(TaKaRa,大连) 5.0 μL,上下游引物(10 μmol·L−1)各0.4 μL,cDNA模板(反转录cDNA稀释20倍)2.0 μL,双蒸水2.2 μL,每个样品设置3个生物学重复。反应程序为两步法:95 ℃预变性30 s,95 ℃变性5 s,60 ℃复性30 s,重复40个循环;然后以95 ℃持续5 s,60 ℃持续1 min,95 ℃持续15 s作为溶解曲线程序。
表 1 OfHXKs基因表达分析所用引物序列
Table 1. Primer sequences of OfHXK genes of O. fragrans
基因名称 正向引物序列(5′→3′) 反向引物序列(5′→3′) OfHXK1 TTCTTCTTCGTCTGGCGTTCTG GTGCATTAACCCGCATATCCAGG OfHXK2 ACCTCCCTAAAAACAAGGAGAGTTG AGTATCCCGTCCCATTTTCTTTAGG OfHXK3 CACTTATTTGGTCACTCAGTTCCCG ACACACGTCTATGACAATCTTCCTC OfHXK4 GCACTCATTGCAGCCTCTCACT CTCACTCTGACAGTGACCGGCGTTA OfACT CCCAAGGCAAACAGAGAAAAAAT ACCCCACTACCAGAATCAAGAA -
根据桂花不同花色品种转录组Unigene序列分析,筛选得到4个HXK基因的同源基因(OfHXK1~OfHXK4),3个品种中均含有这4个HXK基因的同源基因。利用DNAMAN对不同品种OfHXK1~OfHXK4核苷酸序列进行多序列比对,核苷酸序列相似性比较结果见表2。不同品种桂花OfHXK1、OfHXK3和OfHXK4基因核苷酸序列相似性均高于99%,而不同品种桂花OfHXK2基因核苷酸序列相似性为94.42%~98.26%。选择‘堰虹桂’的OfHXK1~OfHXK4基因推测的氨基酸序列进行后续分析。
表 2 桂花OfHXKs核苷酸相似性比较表
Table 2. Comparison of nucleotide sequences of OfHXKs in O. fragrans
基因名称 相似性/% OfHXK1-YHG OfHXK1-YLL OfHXK1-JQG OfHXK2-YHG OfHXK2-YLL OfHXK2-JQG OfHXK3-YHG OfHXK3-YLL OfHXK3-JQG OfHXK4-YHG OfHXK4-YLL OfHXK4-JQG OfHXK1-YHG 100.00 OfHXK1-YLL 99.87 100.00 OfHXK1-JQG 99.87 100.00 100.00 OfHXK2-YHG 72.26 72.19 72.19 100.00 OfHXK2-YLL 72.21 72.14 72.14 94.42 100.00 OfHXK2-JQG 71.62 71.55 71.55 95.40 98.26 100.00 OfHXK3-YHG 58.38 58.45 58.45 59.90 58.37 58.03 100.00 OfHXK3-YLL 58.38 58.45 58.45 59.83 58.30 57.96 99.73 100.00 OfHXK3-JQG 58.38 58.45 58.58 59.62 58.23 57.83 99.19 99.33 100.00 OfHXK4-YHG 59.37 59.37 59.37 58.29 58.67 58.28 52.54 52.61 52.40 100.00 OfHXK4-YLL 59.63 59.63 59.63 58.86 58.66 58.44 52.65 52.73 52.50 99.71 100.00 OfHXK4-JQG 59.70 59.70 59.70 58.22 58.53 58.14 52.34 52.40 52.20 99.02 99.28 100.00 利用DNAMAN对‘堰虹桂’OfHXK1~OfHXK4氨基酸序列比对。由图1可知:不同OfHXKs间具有高度保守的结构域,均包含2个保守的磷酸化作用位点phosphate 1和phosphate 2以及1个底物结合位点sugar binding。预测OfHXK1与OfHXK2序列中均包含12个疏水通道和11个甘氨酸残基,而OfHXK3包含11个疏水通道和10个甘氨酸残基,OfHXK4则包含12个疏水通道和10个甘氨酸残基。与其他序列相比,OfHXK4氨基酸序列在其C端的腺苷结合位点处多出11个氨基酸残基(KNEGASRSKMR)。
-
利用ExPASy protparam预测分析OfHXKs家族蛋白质序列的基本理化性质,了解相对分子质量、氨基酸组成、等电点(PI)、不稳定系数、总平均亲水性等,结果见表3。以OfHXK1为例,该基因编码的氨基酸数目为498个,蛋白质相对分子量为53 881.09 Da,理论等电点为5.41,分子式为C2387H3857N653O719S21,氨基酸组成有20种,含有负电荷残基(Asp+Glu)66个,正电荷残基数(Arg+Lys)53个,总平均疏水性为0.055,不稳定系数为47.03,故推测OfHXK1为稳定蛋白质。结果显示:除OfHXK4为不稳定蛋白质外,其余均为稳定蛋白质。蛋白质信号肽预测使用SignalP在线软件默认条件下对OfHXKs氨基酸序列N-端开始前70位氨基酸进行信号肽预测分析,结果显示OfHXKs氨基酸序列均无信号肽存在。应用YLoc在线软件进行亚细胞定位预测,结果显示OfHXK1与OfHXK2均定位于细胞质中,而OfHXK3则定位于叶绿体,OfHXK4位于线粒体。
表 3 桂花OfHXKs蛋白质基本理化信息
Table 3. Information of OfHXK proteins in O. fragrans
蛋白质 相对分子量 理论等电点 氨基酸数目/个 正电荷 负电荷 不稳定系数 总平均亲水指数 信号肽 亚细胞定位 OfHXK1 53881.09 5.41 498 53 66 37.03 0.055 无 细胞质 OfHXK2 54328.40 5.91 501 55 62 34.73 −0.077 无 细胞质 OfHXK3 53812.81 5.99 495 64 59 37.25 −0.023 无 叶绿体 OfHXK4 55894.38 6.58 510 61 63 46.37 −0.042 无 线粒体 使用TMHMM在线软件分析桂花OfHXKs蛋白质可能的跨膜区域,结果显示除OfHXK3外均具有跨膜区域(图2),OfHXK1、OfHXK2与OfHXK4分别在第7~24位氨基酸残基、第9~28位氨基酸残基和第5~24位氨基酸残基处具有跨膜区域,因此判断OfHXK1、OfHXK2与OfHXK4为跨膜蛋白质,而OfHXK3则不属于跨膜蛋白质。
蛋白质的二级结构预测是为了判断目的基因所编码的氨基酸序列残基是处于α-螺旋、β折叠还是其他状态的二级结构。通过SOPMA在线预测分析,结果显示桂花OfHXKs蛋白质二级结构主要以α-螺旋和无规则卷曲为主(表4)。使用SWISS-MODEL进行三级结构预测,结果显示为图3。
表 4 桂花花瓣OfHXKs蛋白质二级结构预测
Table 4. Secondary structures of OfHXK proteins in O. fragrans
蛋白质 α-螺旋 β-转角 无规则卷曲 延伸链 氨基酸数目/个 占比/% 氨基酸数目/个 占比/% 氨基酸数目/个 占比/% 氨基酸数目/个 占比/% OfHXK1 239 47.99 31 6.22 162 32.53 66 13.25 OfHXK2 241 48.10 32 6.39 163 32.53 65 12.97 OfHXK3 208 42.02 31 6.26 188 37.98 68 13.74 OfHXK4 223 43.73 26 5.10 182 35.69 79 15.49 -
通过NCBI在线数据库比对,将4个桂花花瓣OfHXKs蛋白质序列分别进行同源性比对。Blastp比对结果显示:OfHXK1与油橄榄Olea europaea XP_022882495.1同源性为96.39%,与芝麻Sesamum indicum XP_022882495.1同源性为88.15%;OfHXK2与油橄榄XP_022843013.1同源性高达97.80%;OfHXK3与油橄榄XP_022884724.1同源性高达96.16%,而与阿月浑子Pistacia vera XP_031283181.1以及粉红钟花Handroanthus impetiginosus PIM98716.1同源性分别为82.70%与85.45%;OfHXK4与油橄榄XP_022873061.1同源性达到95%以上,说明OfHXKs具有高度保守性。
利用MEGAX软件对4个桂花花瓣OfHXKs蛋白质和从NCBI在线数据库中找到的拟南芥HXKs蛋白质序列进行多序列比对,以100% bootstrap支持度构建系统进化树进行分析,预测桂花OfHXKs的功能。由图4所示:所选择蛋白质序列分别为拟南芥AtHXK1(U28214)、AtHXK2(U28215)、AtHXK3(BT030472)、AtHKL1(NM_103929)、AtHKL2(NM_112895)和AtHKL3(NM_119945)。进化树分析结果表明桂花花瓣OfHXK1与OfHXK2关系较近,而OfHXK3和OfHXK4分别聚集在不同小支,由此推断OfHXKs蛋白质之间的功能可能具有一定区别。其中OfHXK1、OfHXK2与拟南芥AtHXK1、AtHXK2聚集在一支,而OfHXK3则与拟南芥AtHXK3关系较近,OfHXK4则与拟南芥AtHKL1、AtHKL2关系较近。
-
以桂花的顶壳期(S1)、铃梗期(S2)、初花期(S3)和盛花期(S4)花序以及1年生茎、2年生茎、嫩叶、成熟叶的cDNA为模板,以桂花ACT基因为内参,进行实时荧光定量PCR,检测不同品种桂花不同组织及不同发育阶段的OfHXKs基因表达情况。由图5可见:OfHXK1在‘堰虹桂’中的表达量呈现先上升后下降的趋势;在‘金球桂’中同样也在S3时期表达量最高,且显著高于‘堰虹桂’与‘玉玲珑’中相同时期的表达量(P<0.05);而OfHXK1基因在‘玉玲珑’中的表达呈现先上升后下降的趋势,于S2时期的表达量达到最高。OfHXK2基因在‘堰虹桂’中的表达量呈现逐步上升的趋势,于盛花期的表达量最高;在‘金球桂’中,OfHXK2的表达量随着开放过程未发生变化;OfHXK2的表达量在‘玉玲珑’中呈现先上升后下降的趋势。OfHXK3基因在3个品种的表达量随着花开放呈现先上升后下降的趋势,均在S2时期达到最高;S2时期‘金球桂’OfHXK3基因的表达量最高,‘玉玲珑’次之。OfHXK4基因在‘堰虹桂’和‘金球桂’中的表达量也是先上升后下降的趋势,在S2时期达到最高,而该基因在‘玉玲珑’中表达量逐渐下降。S2时期‘金球桂’OfHXK4基因的表达量最高,‘堰虹桂’次之。
图 5 各品种桂花不同发育时期花序OfHXKs基因相对表达量变化
Figure 5. Expression changes of OfHXK genes during different inflorescence of different O. fragrans cultivars
如图6所示:在不同组织中,OfHXK1在嫩叶中的表达量最高,在成熟叶和盛花期花序中表达量次之,在1年生茎中的表达量最低;OfHXK2在盛花期花序中的表达量最高,在2年生茎中的表达量最低;OfHXK3则在茎中表达量最高,在成熟叶中的表达量极低;OfHXK4在成熟叶中的表达量最高,嫩叶中表达量次之,显著高于1、2年生茎和盛开期花序中的表达量。
-
HXK参与糖代谢的同时也参与己糖信号的感受和传导[20-22],由于其重要的生物学功能,关于HXK蛋白的研究也逐渐成为热点[9, 14, 23-25]。本研究在桂花中发现HXK基因的4个同源基因,表明与其他植物一样[6],HXK基因也是以多基因家族形式存在桂花中,同一HXK基因家族成员序列在不同桂花品种中保守。桂花OfHXK1~OfHXK4基因推导的氨基酸序列均包含葡萄糖和ATP的结合位点,推测OfHXK1~OfHXK4均具有催化己糖磷酸化的功能。其中,OfHXK4氨基酸序列在其N端的腺苷结合位点处多出11个氨基酸残基,这与拟南芥中HKL1和HKL2腺苷结合位点处多10个和6个氨基酸残基的情况[10]类似。
进化树表明OfHXK1、OfHXK2与拟南芥AtHXK1、AtHXK2聚集在一支,已知AtHXK1和AtHXK2具有催化己糖磷酸化的作用[10],且具有糖感知和传导的功能[26],推测OfHXK1与OfHXK2同样具有催化己糖磷酸化和感知并转导糖信号的功能。OLSSON等[27]将植物HXK分为A类和B类,A类HXK具有质体信号肽,如AtHXK3;B类HXK具有N端膜锚定结构,如AtHXK1与AtHXK2。根据进化树推测OfHXK1和OfHXK2可能属于B类HXK,此外,核心的糖结合区域(LGFTFSFP-Q-L/I)在OfHXK1和OfHXK2序列中极其保守。OfHXK3与AtHXK3聚集于同一小支,拟南芥AtHXK3具有催化作用但无糖信号传导功能[28],推测无跨膜区域的OfHXK3属于A类HXK,具有催化作用但无糖信号传导功能。定位于线粒体中的拟南芥AtHKL1和AtHKL2属于酶催化活性不高的HXK亚型,其氨基酸序列C端的腺苷结合位点处多出若干个氨基酸残基[10],而推测聚在一支的OfHXK4有相同特点。
桂花OfHXK1~OfHXK4基因在1年生茎、2年生茎、嫩叶、成熟叶和盛开时花序中均有表达。其他物种的大部分HXK基因,如拟南芥AtHXK1~AtHXK3、AtHKL1和AtHKL2[10],番茄Lycopersicon esculentum LeHXK1~LeHXK4[11],水稻Oryza sativa OsHXK2~OsHXK9[8],枸杞Lycium barbarum LbHXK[29]和苹果Malus × domestica MdHXK1[30],在被检测的组织器官中均有表达。但是OfHXKs不同成员在不同组织中的表达水平呈现一定差异。OfHXK1和OfHXK2基因在叶和花中的表达量高于茎中,而OfHXK3基因在茎中的表达量最高,表明HXKs基因不同成员虽然磷酸己糖的功能存在冗余[10],但是不同成员在桂花不同组织中发挥的主导作用存在差异。依据进化树分析,OfHXK1与OfHXK2基因被推测具有糖信号感知和转导功能,可能参与调控桂花花色和花香相关次生代谢物质的生物合成,这可能是OfHXK1与OfHXK2基因在花中的表达量较高的原因之一。
本研究分析了3个桂花品种不同发育阶段花瓣中OfHXKs基因的表达情况,整体上‘金球桂’中OfHXKs基因表达量最高;随着花开放的进程,OfHXK1、OfHXK3和OfHXK4基因的表达量呈现先上升后下降的趋势。枸杞中研究发现,随着枸杞果实的发育,HXK基因表达量在色变期达到峰值,成熟期表达量又下降[29]。牡丹Paeonia suffruticosa花瓣中的研究发现:随着发育过程PsHXK1和PsHXK2基因在花瓣中的表达量呈现先增加后下降的规律,该变化规律与己糖含量有密切的关联[24]。植物组织器官中的糖含量在一定范围内增加可以促进HXK基因转录本和蛋白质的积累,植物体内己糖的磷酸化水平随之增加;超过一定阈值后,植物体内糖含量增加则会抑制HXK基因转录和蛋白质的积累[5]。这也就解释了大部分OfHXKs基因表达量先上升后下降的原因。桂花不同品种色素物质和香气挥发物含量不同[1-2],推测不同桂花品种对HXK己糖磷酸化和糖信号转导作用的需求不同,此外HXK不同成员还有功能冗余的特点,因此OfHXK2基因在3个桂花品种花瓣中的表达模式不同。
-
本研究根据桂花转录组Unigene序列分析,筛选得到4个HXK基因的同源基因。生物信息学分析结果表明4个基因分别编码461~510个氨基酸残基,同时推测OfHXK1~OfHXK4均具有催化己糖磷酸化的功能。进化树分析表明OfHXK1和OfHXK2与拟南芥AtHXK1与AtHXK2亲缘关系较近;OfHXK3与AtHXK3亲缘关系较近;OfHXK4与AtHKL1和AtHKL2亲缘关系较近。实时荧光定量PCR分析表明桂花OfHXK1~OfHXK4基因在1年生茎、2年生茎、嫩叶、成熟叶和花序中均有表达;OfHXK1、OfHXK3和OfHXK4基因随着花开放的进程,整体上表达量呈现先上升后下降的趋势,而OfHXK2基因在3个品种花序发育过程中表达模式不同。
Sequence and expression analysis of hexokinase gene family members in Osmanthus fragrans
-
摘要:
目的 研究桂花Osmanthus fragrans己糖激酶家族成员序列特征及表达变化规律。 方法 选取3个不同花色桂花品种‘堰虹桂’O. fragrans ‘Yanhong Gui’、‘玉玲珑’O. fragrans ‘Yulinglong’、‘金球桂’O. fragrans ‘Jinqiu Gui’,从转录组数据中筛选得到HXK同源基因,进行序列分析和系统进化树分析,并利用实时荧光定量PCR检测不同品种桂花不同组织及不同发育阶段的OfHXKs基因表达情况。 结果 筛选得到OfHXK1~OfHXK4基因,分析表明不同品种桂花OfHXK1、OfHXK3和OfHXK4基因核苷酸序列相似性均高于99%。OfHXKs基因编码461~510个氨基酸残基,均包含2个保守的磷酸化作用位点和1个糖结合位点。OfHXK1和OfHXK2具有N端膜锚定结构,与拟南芥Arabidopsis thaliana AtHXK1与AtHXK2聚为一支;无跨膜区域的OfHXK3与AtHXK3亲缘关系较近,推测二者具有催化作用但无糖信号传导功能;OfHXK4蛋白腺苷结合位点处多出11个氨基酸残基,与AtHKL1和AtHKL2亲缘关系较近。4个桂花HXK基因成员在桂花1年生茎、2年生茎、嫩叶、成熟叶和花序中均有表达。随着花开放的进程,整体上OfHXK1、OfHXK3和OfHXK4基因的表达量呈现先上升后下降的趋势,而OfHXK2基因在3个品种花序发育过程中表达模式不同。 结论 根据序列分析与进化树分析,推测桂花OfHXK1~OfHXK4均具有催化己糖磷酸化的功能,OfHXK1和OfHXK2具有糖信号感知和转导的功能。OfHXK1、OfHXK3和OfHXK4基因随花序发育呈现有规律升降的表达模式,可能与其参与糖类物质代谢有关。图6表4参30 Abstract:Objective This study aims to analyze the sequence characteristics and expression changes of hexokinase family members of Osmanthus fragrans. Method Based on the transcriptome data of O. fragrans cultivars ‘Yanhong Gui’, ‘Yulinglong’ and ‘Jinqiu Gui’, HXK homologous genes were selected for sequence analysis and phylogenetic tree analysis, and real-time fluorescence quantitative PCR was used to detect the expression of OfHXKs genes in different tissues and development stages of O. fragrans. Result Four HXK homologous genes OfHXK1−OfHXK4 were screened, and sequence identity of OfHXK1, OfHXK3 and OfHXK4 from different cultivars is more than 99%. OfHXKs encode 461−510 amino acid residues, including two conserved phosphorylation motifs phosphate 1 and phosphate 2, and one sugar binding motif. Sequence analysis and phylogenetic tree analysis showed that OfHXK1 and OfHXK2 have N-terminal membrane anchoring structures, which are grouped together with AtHXK1 and AtHXK2 from Arabidopsis thaliana. OfHXK3 without transmembrane region is closely related to AtHXK3, so it was speculated that OfHXK3 has catalytic effect but without sugar signaling function. OfHXK4 protein with 11 amino acid insertions at the adenosine binding domain, is closely related to AtHKL1 and AtHKL2. Four HXK gene members from O. fragrans are all expressed in the annual stem, biennial stem, tender leaves, mature leaves and inflorescence. With the development of flower, the expression levels of OfHXK1, OfHXK3 and OfHXK4 genes increase first and then decrease, while the expression patterns of OfHXK2 genes during flower development are different in the three cultivars. Conclusion According to sequence analysis and evolutionary tree analysis, it is speculated that OfHXK1−OfHXK4 all have the function of catalysing hexose phosphorylation, and OfHXK1 and OfHXK2 have the function of sugar sensing and signaling. The expression patterns of OfHXK1, OfHXK3, and OfHXK4 genes during the inflorescence development of the three varieties showed a regular increase and decrease with the process of flower opening, which may be associated with their functions in sugar metabolism. [Ch, 6 fig. 4 tab. 30 ref.] -
Key words:
- Osmanthus fragrans /
- hexokinase /
- gene cloning /
- expression analysis
-
全球土壤碳储量约为1 500 Pg,超过全球陆地植被碳储量和大气碳储量之和[1]。土壤呼吸年均释放80~95 Pg二氧化碳-碳(CO2-C)到大气中[2-3],是化石燃料燃烧产生二氧化碳排放量的11倍以上[4-5],是陆地生态系统第二大碳通量。全球范围内,森林在减缓气候变化方面发挥着重要的作用[6]。作为地下生态过程的土壤呼吸显著影响着陆地生态系统的碳循环[7],其通量过程已成为全球变化生态学研究的核心和焦点之一。一方面,大气中CO2等温室气体的增加是导致全球气候变化的主要原因。另外一方面,全球气候变化也会加速土壤呼吸速率,进一步增加CO2年排放量。CO2排放与全球气候变化的正反馈作用将放大全球气候变化对陆地生态系统的影响,因此备受学术界和各国政府关注[5, 8]。森林是陆地生态系统中最大的碳库,其面积约占陆地面积的1/3,对全球碳收支有着重要影响。森林土壤碳储量约占森林生态系统碳储量的2/3,约占全球土壤碳储量的39%[9-10]。森林土壤不仅是植被生长的基础,也是CO2的源、汇地之一,通过土壤呼吸排放到大气中的CO2是大气的重要碳源[11]。在碳中和背景下,被关注的重点是非自然变动引起的森林土壤呼吸的增加或减少,这种变化量才是森林生态系统的有效碳源或碳汇。森林生态系统中的人为干扰(如森林经营活动)能在很大程度上影响土壤CO2排放[12]。其中,森林采伐作为最重要的经营措施及干扰程度最大的人为干扰活动之一,通过改变植被组成、林内光照、凋落物质量、数量及土壤温湿度等进而影响着土壤CO2排放。学者们针对不同气候带的森林开展了多种采伐方式对土壤呼吸影响的研究,但是结论并不一致,存在很大的不确定性。科学认识采伐干扰下森林土壤CO2排放的特征,探讨减少土壤呼吸的森林经营措施对于增强森林的固碳减排功能具有重要的科学意义和实践价值。为此,本研究综述了不同采伐方式对森林土壤呼吸的影响及其机制,主要包括不同采伐方式处理下、不同森林类型对于森林土壤呼吸总量、土壤呼吸组分及其温度敏感性(Q10)的影响,并总结了采伐对土壤呼吸影响的调控因子,在此基础上,提出了该领域的研究前景,以期为中国选择合理的采伐方式,降低森林土壤CO2排放,2060年实现碳中和提供参考。
1. 土壤呼吸的组成
土壤释放CO2的过程称为土壤呼吸,包括3个生物学过程和1个非生物学过程[13]。3个生物学过程分别是自养呼吸、土壤微生物异养呼吸和土壤动物异养呼吸。植物根系与根际呼吸产生的CO2排放,称为自养呼吸;微生物分解土壤有机质产生的CO2排放,称为土壤微生物异养呼吸;土壤动物呼吸产生的CO2排放,称为土壤动物异养呼吸[13]。非生物学过程是指土壤含碳矿物质化学氧化产生的CO2排放[13],其产生的CO2量远少于生物学过程而通常被忽略不计。
土壤呼吸组分因其产生途径、产生部位和所利用碳源的不同有着不同的术语表达,且经常存在土壤呼吸组分术语混用的问题[14]。在分析森林采伐对土壤呼吸的影响时,可以以采伐影响土壤呼吸的产生途径、产生部位和碳源等某一方面为主进行分析。从土壤CO2排放的产生途径来分析,可以分为自养呼吸(autotrophic respiration)和异养呼吸(heterotrophic respiration)[8, 15]。从土壤CO2排放的产生部位来分析,可分为根际区、无根系影响的土壤和凋落物层3个部位[16]。从土壤CO2排放所利用的碳源来分析,可以分为土壤有机质源CO2和植物源CO2(包括凋落物源、死根源、活根源)[17-19]。
2. 采伐对森林土壤总呼吸的影响
森林采伐是一种非常普遍的经营作业方式,一般分为针对成熟林或过熟林的皆伐、择伐和渐伐等主伐、针对中幼龄林的间伐以及针对防护林的更新采伐。皆伐是将伐区上的林木一次性全部伐除或几乎伐除(保留部分母树)的主伐方式。择伐、渐伐、间伐、更新采伐都是仅将伐区上的林木移除一部分,为方便叙述,本研究统一称它们为部分采伐。森林采伐要砍伐林分中的所有或部分林木,势必会降低冠层覆盖,去除林分或改变林分结构,影响各种环境因子,进而影响土壤呼吸。
2.1 皆伐对森林土壤总呼吸的影响
目前,关于皆伐影响土壤总呼吸的研究有很多,结果并不一致(表1),可以分为增加、不变、减少3种结论。通常认为皆伐短期内会增加土壤总呼吸[20]:锐齿栎Quercus aliena皆伐4个月后土壤总呼吸增加5%[21];挪威云杉Picea abies林皆伐后第2年土壤总呼吸增加29%,第3年增加52%[22];云杉Picea asperata林皆伐后2 a土壤总呼吸增加50%[23]。其主要原因有:①土壤温度升高提升了异养呼吸速率。林地皆伐后土壤受阳光直射,其温度会发生剧烈的变化[24],从而提升了土壤有机质的分解速率和土壤微生物异养呼吸[21],大量研究表明土壤温度提升可以解释85%~98%的土壤呼吸变化[25-29]。②土壤有机质增加。皆伐林地内残留的死根、凋落物和伐木残留物的丰富和矿化导致土壤呼吸在皆伐后几年内增加[23]。③土壤理化性质变化。皆伐会通过影响土壤理化性质,进而影响土壤呼吸。皆伐影响土壤氮含量,土壤氮能加速植物生长,影响土壤根呼吸,同时土壤氮也是土壤微生物的重要影响因子;皆伐还会影响土壤pH,土壤pH通过调控土壤中化学反应的进程和土壤酶活性来间接影响土壤呼吸[30]。还有研究表明皆伐会影响土壤全碳、全氮、碳氮比、速效氮磷钾和土壤容重等,而这些都是土壤呼吸的影响因子[31-35]。
表 1 土壤呼吸及其组分对皆伐的响应Table 1 Response of soil respiration and its components to clear cutting地点 气候带 皆伐更新
方式剩余物
处理方式伐后时
间/a观察时间 森林类型 总呼吸/
%自养呼吸/
%异养呼吸/
%Q10/% 参考文献 中国福建省 亚热带 1 5 cm以上收集,
以下归堆清理5~6 整年 杉阔混交林 −37 −48 −34 −17 [37] 中国黑龙江省 温带 1 1 生长季 白桦沼泽 −6 [58] 中国吉林省 温带 1 主干移除
枝叶未清12~13 生长季 阔叶红松林 −25 −35 [72] 美国加利福尼亚州 温带 1 1~2 整年 云杉林 −29 [38] 中国甘肃省 暖温带 1 1 4个月后整年 锐齿栎 5 [21] 俄罗斯莫斯科州 温带 1 凋落物保留
剩余物保留1~2 生长季 云杉林 50
50[23] 芬兰 温带 1 保留 1 整年 挪威云杉 −16 16
17
25[22] 2 整年 29 3 整年 52 美国密苏里州 热带 主干移除 2~4 整年 栎-山核桃林 −18 [73] 全移除 −17 芬兰 温带 1 全部移除 1 整年 苏格兰松 23 [64] 2 整年 −16 3 整年 −20 加拿大魁北克省 寒带 1 6~7 整年 黑云杉 16 [74] 2 9 加拿大新斯科舍省 温带 3 3~4 整年 混合杉木林 −1 [43] 中国浙江省 亚热带 1 25~26 整年 杉木林 17 −15 [75] 瑞典乌普萨拉省 温带 4 树干树桩收获
树冠枝条保留21~22 整年 苏格兰松
挪威云杉−10 [65] 五大湖流域 温带 1 生长季 糖枫 −7 [57] 日本 温带 4 保留竹类 1~3 整年 寒温带针阔
混交林17 [76] 日本 温带 4 保留竹类 1~10 整年 寒温带针阔
混交林61 [77] 马来西亚 热带 1 树干收获,
其余保留1~2 5个月 重红婆罗双林
龙脑香林不变
不变[44] 韩国 温带 4 1 整年 红松林 41 [78] 中国浙江省 亚热带 1 移除 1 整年 杉木林 −15 −20 [79] 5 火烧 −27 −27 中国浙江省 亚热带 1 保留 2 整年 杉木林 13 −10 [79] 1 保留且翻土 32 −11 中国浙江省 亚热带 1 保留 3 整年 杉木林 16 −10 [79] 1 保留且翻土 30 −12 英国英格兰 温带 1 1 整年 云杉 −22 [80] 2 −42 3 −30 4 −10 马来西亚 热带 1 1~9 隔4周测2周 阔叶混交林 13 [81] 日本 亚热带 1 清除 2 每年5−10月 天然混交林 16 14 [82] 3 11 33 4 20 48 5 5 57 6 5 67 7 20 29 8 4 38 说明:皆伐更新方式中1表示皆伐后自然恢复,2表示皆伐后翻土,3表示皆伐后喷洒除草剂,4表示皆伐后人工种植,5表示皆伐后火烧。 栎Quercus spp.,山核桃Carya spp.,黑云杉Picea mariana,重红婆罗双Shorea spp.,龙脑香Dipterocarpus spp.,红松 Pinus koraiensis。空白表示无此项观测记录 也有少数研究认为,皆伐造成的根呼吸降低大于采伐造成的异养呼吸增加,因此皆伐造成土壤总呼吸的降低[36]。杉阔混交林皆伐第5年土壤呼吸减少48%[37]。云杉林皆伐1 a后土壤呼吸减少29%[38]。皆伐减少土壤呼吸的原因主要有:①皆伐后土壤自养呼吸显著下降。根呼吸占土壤呼吸的50%[39],皆伐迹地植被活根的减少会导致土壤自养呼吸速率下降[40],当自养呼吸下降幅度大于异养呼吸的增加幅度时土壤总呼吸速率表现为降低[21]。②皆伐后采伐剩余物的清除方式。皆伐后火烧或清除采伐剩余物、清理凋落物等都会减少土壤有机质输入,从而减少碳输入[41],微生物的异养呼吸会在一段时间后消耗掉大量的土壤碳[42],减少皆伐迹地土壤碳含量,进而降低土壤呼吸。③皆伐迹地植被恢复的时间不同。从皆伐后立即开展研究到皆伐后若干年开展研究,观察到的皆伐迹地恢复阶段不统一,导致相同气候和人为干扰措施可能因为不同植被恢复阶段而得到不同的研究结论。
还有研究发现皆伐对土壤呼吸无显著影响。例如:杉木Cunninghamia lanceolata林皆伐后第25年土壤呼吸未发生明显变化[43]。杨玉盛等[25]发现杉木林皆伐后土壤呼吸的变化不显著。皆伐后土壤呼吸变化不大的原因可能有:①土壤异养呼吸的增加弥补了根呼吸的减少导致了土壤总呼吸基本不变。皆伐后根系呼吸的下降和物质输入的消失可降低土壤自养呼吸,而采伐剩余物的分解增加及新近死亡的根系分解可能促进土壤异养呼吸,两方面综合作用可能导致土壤总呼吸的不变[25]。也有研究表明,皆伐后土壤微生物呼吸的增加与根呼吸的减少相抵消,从而使得土壤总呼吸未发生明显变化[44-45]。②研究区微地形的影响和地下潜在因素众多,尤其是皆伐后林区排水能力的变化影响地下水位,进一步影响微生物活性,本应增加的土壤微生物呼吸未发生明显变化,导致土壤呼吸未发生明显变化[43]。
综上可见,皆伐对土壤呼吸影响的效果因皆伐措施的不同、森林类型的不同和伐后恢复时间的不同呈现显著的时空和地域异质性[46-47]。
2.2 部分采伐对森林土壤呼吸的影响
部分采伐对森林土壤呼吸影响的研究相对于皆伐较少[48]。部分采伐收获了部分林木,对林分及其土壤的干扰程度相比皆伐较低。从目前的研究情况(表2)来看,部分采伐对土壤呼吸影响的研究结果也不一致,有增加[49-50],减少[36, 51]和基本不变[52-54]共3类。有关部分采伐对土壤呼吸影响的研究常聚焦于不同采伐强度的影响上。如马尾松Pinus massoniana林间伐15%和间伐70%后1 a内土壤呼吸分别为保持不变和增加17%[55];杉阔混交林间伐35%、49%和68%第5年土壤呼吸分别增加15%、增加16%和减少10%[37]。毛竹Phyllostachys edulis林择伐24%第3~8个月土壤呼吸减少16%[56]。糖枫Acer saccharum林间伐35%第5~10个月土壤呼吸减少19%[57]。白桦Betula platyphylla沼泽林渐伐45%第8~13个月土壤呼吸减少15%[58]。
表 2 土壤呼吸及其组分对部分采伐的响应Table 2 Response of soil respiration and its components to partial cutting地点 气候带 部分采伐
强度/%剩余物
处理方式伐后时
间/a观察时间 森林类型 总呼吸/
%自养呼吸/
%异养呼吸/
%Q10/% 参考文献 中国湖北省 亚热带 除灌 清理 1 整年 马尾松林 −17 −17 −18 [56] 15 移除树干 −14 11 70 移除树干 17 11 22 中国山西省 温带 20 清除 1 生长季 油松人工林 −4 18 −6 6 [69] 30 23 64 19 −30 40 52 290 30 −13 中国湖北省 亚热带 24 1 生长季 毛竹林 −16 28 −29 9 [56] 中国福建省 亚热带 35 5 cm以上收集,
以下归堆5~6 整年 杉阔混交林 15 14 15 52 [37] 49 16 13 17 34 68 −10 −5 −12 −1 中国黑龙江省 温带 45 1 生长季 白桦沼泽 −15 [58] 中国陕西省 温带 15 清除采伐剩余物 3~4 生长季 华北落叶松 −5 47 [84] 35 16 3 50 −3 15 中国陕西 温带 12 1~4 生长季 华北落叶松 [28] 32 17 47 斯洛文尼亚 温带 50
1001~3 生长季 山毛榉林 47
69[85] 中国黑龙江省 温带 20 堆腐 1~4 生长季 针阔混交林 23 [59] 39 22 52 24 62 27 71 22 挪威 寒带 41 32~33 夏季 挪威云杉 13 [86] 55 17 加拿大安大略省 温带 50 2 生长季 耐寒阔叶林 54 [57] 爱尔兰 温带 42 1~2 整年 云杉 13 [87] 日本 亚热带 50 2~4 整年 日本雪松林 46 − [88] 加拿大安大略省 温带 28 1 生长季 杉阔混交林 17 −25 [50] 2 18 −6 3 16 19 中国湖北省 亚热带 23 手工除草为对照
除草剂除草为处理1 整年 毛竹林 −7 20 −13 3 [83] 斯洛文尼亚 温带 50 1~3 生长季 云杉林/冷杉林 26 [85] 100 48 中国湖北省 亚热带 15 清除 1~3 全年 马尾松林 29 14 39 [89] 70 42 19 59 说明:日本雪松Cryptomeria japonica。空白表示无此项观测记录;−表示减少 部分采伐增加土壤呼吸的原因有:①部分采伐减小了森林郁闭度,林下光照强度增加导致土壤温度增加,促进土壤有机质分解,从而增加土壤异养呼吸,同时也促进植物根系的生长,增加土壤自养呼吸[49];②部分采伐后采伐剩余物例如木屑和树枝树叶等进入土壤,为土壤微生物活动提供底物,增加土壤异养呼吸[59]。部分采伐降低土壤呼吸可以归因为:①部分采伐时整株植物被移除,凋落物减少,碳底物供应下降导致土壤呼吸减弱[56]。②部分采伐后乔木层减少,树木蒸腾作用减弱,地下水位上升,土壤孔隙减少,导致土壤呼吸减小[58]。部分采伐对土壤呼吸无显著影响可能是因为:①部分采伐提高了土壤异养呼吸,但又同时降低了根呼吸,综合作用下部分采伐对土壤呼吸无影响[55]。②部分采伐后林地凋落物储量、有机碳储量、土壤总孔隙度及细根生物量仍能维持较高的水平,与对照相比土壤呼吸未发生显著变化[37]。
总体上,部分采伐对土壤湿度、细根生物量和土壤碳储量(包括土壤总碳含量、土壤有机碳和微生物量碳)无显著影响。但是部分采伐会导致凋落物等显著减少,土壤温度升高,土壤总呼吸上升。轻度和中度部分采伐显著增加土壤呼吸,尤其是在植被恢复的早期阶段(≤2 a)[60]。
3. 采伐对森林土壤呼吸组分的影响
虽然近些年来对土壤呼吸组分的研究大幅度增加(表1和表2),但是与采伐对森林土壤呼吸影响的研究相比,采伐对土壤呼吸组分影响的研究要少得多。土壤自养呼吸和土壤异养呼吸受到土壤温度、土壤湿度和细根生物量等一系列因素的影响[44]。
3.1 皆伐对森林土壤呼吸组分的影响
皆伐导致细根大量死亡,土壤自养呼吸显著下降[37]。皆伐后森林乔木层消失,太阳直射地表导致土壤温度升高,地表水分加速蒸发[61]。地表温度的上升促进了枯枝落叶层和表层土壤有机质的分解[29];皆伐带来的新鲜采伐剩余物为土壤微生物提供了大量的碳源[62],以上2点原因导致了皆伐后土壤异养呼吸增加[63]。但此部分碳源分解较快,长时间土壤异养呼吸下降会导致土壤异养呼吸短时间内增加长时间内减少,其他研究也佐证了这一结论。例如苏格兰松Pinus sylvestris皆伐第1年土壤异养呼吸增加23%,第2年减少16%,第3年减少20%[64]。这是因为皆伐时产生的碎木屑进入土壤,增加了土壤微生物呼吸的底物,导致了土壤异养呼吸的增加,但是这部分底物很少,在第2年和第3年时底物分解殆尽,土壤异养呼吸下降。杉阔混交林皆伐第5年土壤自养呼吸减少48%,土壤异养呼吸减少34%[37]。这是因为皆伐收获了林木,植物根大量死亡,土壤自养呼吸显著下降,同时皆伐后林地凋落物、土壤总孔隙度和土壤有机质都出现了明显的下降,土壤异养呼吸显著下降。苏格兰松和挪威云杉在皆伐第22年土壤异养呼吸减少10%[65]。而这可能是因为此研究采用挖掘机收获伐桩,比起用带有刀片的推土机,对土壤的扰动更小,不同收获方式导致土壤呼吸的变化不同。
总体来看,与对照组相比,皆伐破坏了森林地上植被,导致根系死亡,土壤自养呼吸下降;皆伐后保留采伐剩余物短时间内土壤异养呼吸增加,长时间后则土壤异养呼吸会下降。这是因为保留采伐剩余物为土壤微生物呼吸和土壤动物呼吸提供了碳源,但是这种碳源易分解,短时间内会释放大量CO2,长时间后则易分解有机质减少,土壤异养呼吸下降。同时皆伐砍伐灌木、清除草本和根系分解可能补偿根系和根际呼吸的减少[66]。
3.2 部分采伐对森林土壤呼吸组分的影响
部分采伐主要通过以下两方面影响土壤呼吸组分:①不同的采伐剩余物处理方法对土壤微生物底物的供应不同,影响土壤微生物呼吸,从而影响土壤异养呼吸。②部分采伐强度不同,对植物根的破坏程度不同,对土壤自养呼吸的影响也不同。例如,马尾松林间伐15%和70%在1 a内(仅移除树干)土壤自养呼吸分别减少14%和增加11%,土壤异养呼吸分别增加11%和22%。这是因为15%间伐清除了林下灌木和部分林下树种,这些植被细根比例大且分布较浅,清除后可能会显著降低表层土壤根系生物量,导致土壤自养呼吸减少[55];70%间伐导致地上植被减少,但是充足的养分会促进剩余植被的生长,导致根系生物量增加,进而增加根呼吸,原本应减少的根呼吸无显著变化[55];2种强度的采伐后林地残留的伐根死亡为土壤异养呼吸增加了底物,同时活立木的减少改变了林木微环境,为土壤微生物活动创造了适宜的条件,导致土壤异养呼吸增加[67-68]。油松Pinus tabulaeformis人工林择伐20%、30%和40%第2~7个月(采伐剩余物清除)土壤自养呼吸分别增加18%、64%和290%,土壤异养呼吸分别减少6%、增加19%和增加30%[69]。此研究中随着林分密度的递减,林地总活根量密度增大,而总活根量在一定程度上决定根呼吸,故随采伐强度增加,土壤自养呼吸越强。随着采伐强度的增加,进入土壤的枯枝落叶增加,而枯枝落叶层的覆盖对土壤CO2的排放有一定的阻碍[70],故对照组异养呼吸低于处理组。毛竹林间伐24%第3~8个月土壤异养呼吸增加28%,土壤自养呼吸减少29%[56]。这是因为采伐后林地表面温度升高,地上碳供应减少,根基分泌物减少,导致土壤有机碳分解增加,土壤矿质呼吸增加,而根呼吸的下降可能是因为底物供应的下降[71]。杉阔混交林择伐35%、49%和68%第5年(采伐剩余物长度5 cm以上收集以下归堆清理)土壤自养呼吸分别增加14%、增加13%和减少5%,土壤异养呼吸分别增加15%、增加17%和减少12%[37],而这些差异在统计学上并不显著。这是因为择伐后林地凋落物储量、土壤总孔隙度、有机碳储量、有机质和细根生物量仍维持在较高的水平,土壤呼吸组分未发生显著变化。
可以看出,部分采伐对土壤呼吸组分的影响会随着采伐剩余物处理方式的不同而发生显著的变化,保留采伐剩余物短时间内通常会增加土壤异养呼吸;同时林分根系的生长也会随着伐后恢复的程度而得到增强,伐后恢复时间越久,部分采伐对土壤呼吸组分的影响越小。
4. 采伐对土壤呼吸温度敏感性的影响
土壤温度是影响土壤呼吸的重要环境因子,土壤呼吸的温度敏感性用Q10来表示,是指土壤呼吸随温度每升高10 ℃所增加的倍数。Q10值不仅随地理位置、森林生态系统的不同而不同,也会受到人为干扰活动如采伐的影响。
皆伐对土壤呼吸温度敏感性的影响主要取决于皆伐迹地植被恢复的时间。例如欧洲云杉皆伐1~3 a Q10连年上升,第1年增加16%,第2年增加17%,第3年增加25%[22],阔叶红松林皆伐13 a后生长季Q10减少35%[72],但杉木林皆伐1~3 a无论是移除还是保留采伐剩余物Q10皆下降[79]。而杉阔混交林皆伐5 a后Q10减少17%[37]。由于皆伐后采伐剩余物管理方式的不同,进入土壤的易分解有机质有多有少,短期内Q10也表现出不同的变化规律,但长期后因为皆伐迹地植被的恢复,土壤温度敏感性基本呈现下降的趋势。
部分采伐对土壤温度敏感性的影响主要取决于部分采伐的强度,但是不同研究的结果并不统一。低强度部分采伐下,短时间内Q10通常增加,毛竹林23%间伐1 a后Q10增加3%[83],油松人工林20%间伐1 a后生长季Q10增加6%[69],毛竹林24%间伐1 a后生长季Q10增加9%[56],杉阔混交林35%和49%间伐5~6 a内Q10分别增加52%和34%[37],华北落叶松15%间伐3~4 a内生长季Q10增加47%[84]。但是也有结果相反的研究,例如杉阔混交林28%间伐1、2 a后Q10分别减少25%和6%,这和此研究中夏季降雨量减小有关。高强度采伐后Q10的变化并不统一,例如油松人工林40%间伐1 a后生长季Q10减少13%[69],杉阔混交林间伐68% 5~6 a内Q10减少1%[37],华北落叶松50%间伐3~4 a Q10增加15%[74]。这可能是因为高强度部分采伐后林窗面积增大,其他植物荫蔽林窗的能力受到当地气候等因素的影响。从以上研究中可以看出,一部分研究结果呈现轻度、中度部分采伐短时间内Q10增加的趋势,随着植被的恢复,Q10也逐渐接近对照林。但是也有部分研究受到其它因素例如降雨量变化的影响,结果与上述研究相反。
5. 展望
总体上皆伐会破坏森林植被,造成植物根系大量死亡,土壤自养呼吸降低,同时皆伐将更多的枯枝落叶带入土壤,加上死亡的植物根系,土壤异养呼吸增加。两者共同作用决定了土壤总呼吸的变化,如果皆伐后对皆伐迹地进行清理,土壤总呼吸往往会下降,如果皆伐迹地内采伐剩余物较多,土壤总呼吸可能会先上升后下降。与皆伐相比,部分采伐对森林的干扰程度不同,一定强度的部分采伐可能会增加土壤总呼吸,随着部分采伐强度的增大,土壤呼吸的变化接近皆伐迹地内土壤呼吸的变化。
森林土壤呼吸是陆地生态系统碳循环的重要组成部分,在全球气候变化中起着重要的作用。皆伐或部分采伐作为重要的人为干扰经营措施,对森林林冠、覆盖率、枝叶雨水截流、土壤温度、土壤湿度等土壤理化性质和土壤呼吸有着显著的影响。森林不同强度部分采伐对伐后植被不同恢复阶段土壤呼吸和土壤碳储量的影响尚不清晰,建议加强土壤呼吸组分对部分采伐强度响应的长期研究。除此之外,森林采伐和林下除灌、除草、定期打枝等其他经营措施的交互作用以及全球大气CO2浓度上升等全球变化因子对区域森林变化也应纳入考量中。
-
表 1 OfHXKs基因表达分析所用引物序列
Table 1. Primer sequences of OfHXK genes of O. fragrans
基因名称 正向引物序列(5′→3′) 反向引物序列(5′→3′) OfHXK1 TTCTTCTTCGTCTGGCGTTCTG GTGCATTAACCCGCATATCCAGG OfHXK2 ACCTCCCTAAAAACAAGGAGAGTTG AGTATCCCGTCCCATTTTCTTTAGG OfHXK3 CACTTATTTGGTCACTCAGTTCCCG ACACACGTCTATGACAATCTTCCTC OfHXK4 GCACTCATTGCAGCCTCTCACT CTCACTCTGACAGTGACCGGCGTTA OfACT CCCAAGGCAAACAGAGAAAAAAT ACCCCACTACCAGAATCAAGAA 表 2 桂花OfHXKs核苷酸相似性比较表
Table 2. Comparison of nucleotide sequences of OfHXKs in O. fragrans
基因名称 相似性/% OfHXK1-YHG OfHXK1-YLL OfHXK1-JQG OfHXK2-YHG OfHXK2-YLL OfHXK2-JQG OfHXK3-YHG OfHXK3-YLL OfHXK3-JQG OfHXK4-YHG OfHXK4-YLL OfHXK4-JQG OfHXK1-YHG 100.00 OfHXK1-YLL 99.87 100.00 OfHXK1-JQG 99.87 100.00 100.00 OfHXK2-YHG 72.26 72.19 72.19 100.00 OfHXK2-YLL 72.21 72.14 72.14 94.42 100.00 OfHXK2-JQG 71.62 71.55 71.55 95.40 98.26 100.00 OfHXK3-YHG 58.38 58.45 58.45 59.90 58.37 58.03 100.00 OfHXK3-YLL 58.38 58.45 58.45 59.83 58.30 57.96 99.73 100.00 OfHXK3-JQG 58.38 58.45 58.58 59.62 58.23 57.83 99.19 99.33 100.00 OfHXK4-YHG 59.37 59.37 59.37 58.29 58.67 58.28 52.54 52.61 52.40 100.00 OfHXK4-YLL 59.63 59.63 59.63 58.86 58.66 58.44 52.65 52.73 52.50 99.71 100.00 OfHXK4-JQG 59.70 59.70 59.70 58.22 58.53 58.14 52.34 52.40 52.20 99.02 99.28 100.00 表 3 桂花OfHXKs蛋白质基本理化信息
Table 3. Information of OfHXK proteins in O. fragrans
蛋白质 相对分子量 理论等电点 氨基酸数目/个 正电荷 负电荷 不稳定系数 总平均亲水指数 信号肽 亚细胞定位 OfHXK1 53881.09 5.41 498 53 66 37.03 0.055 无 细胞质 OfHXK2 54328.40 5.91 501 55 62 34.73 −0.077 无 细胞质 OfHXK3 53812.81 5.99 495 64 59 37.25 −0.023 无 叶绿体 OfHXK4 55894.38 6.58 510 61 63 46.37 −0.042 无 线粒体 表 4 桂花花瓣OfHXKs蛋白质二级结构预测
Table 4. Secondary structures of OfHXK proteins in O. fragrans
蛋白质 α-螺旋 β-转角 无规则卷曲 延伸链 氨基酸数目/个 占比/% 氨基酸数目/个 占比/% 氨基酸数目/个 占比/% 氨基酸数目/个 占比/% OfHXK1 239 47.99 31 6.22 162 32.53 66 13.25 OfHXK2 241 48.10 32 6.39 163 32.53 65 12.97 OfHXK3 208 42.02 31 6.26 188 37.98 68 13.74 OfHXK4 223 43.73 26 5.10 182 35.69 79 15.49 -
[1] FU Jianxin, HOU Dan, WANG Yiguang, et al. Identification of floral aromatic volatile compounds in 29 cultivars from four groups of Osmanthus fragrans by gas chromatography-mass spectrometry [J]. Hortic Environ Biotechnol, 2019, 60(5): 611 − 623. [2] WANG Yiguang, ZHANG Chao, DONG Bin, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans [J]. Front Plant Sci, 2018, 9: 1499. [3] GRANOT D. Role of tomato hexose kinases [J]. Funct Plant Biol, 2007, 34(6): 564 − 570. [4] 程建徽, 谢鸣, 蒋桂华, 等. 植物己糖激酶的信号转导作用[J]. 细胞生物学杂志, 2004, 26(6): 50 − 54. CHENG Jianhui, XIE Ming, JIANG Guihua, et al. The signaling role of hexokinase in plants [J]. Chin J Cell Biol, 2004, 26(6): 50 − 54. [5] WANG Xufeng, LI L M, YANG P P, et al. The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes [J]. Plant Cell Rep, 2014, 33(2): 337 − 347. [6] KARVE R, LAURIA M, VIRNIG A, et al. Evolutionary lineages and functional diversification of plant hexokinases [J]. Mol Plant, 2010, 3(2): 334 − 346. [7] 张超, 王彦杰, 付建新, 等. 高等植物己糖激酶基因研究进展[J]. 生物技术通报, 2012, 28(4): 19 − 26. ZHANG Chao, WANG Yanjie, FU Jianxin, et al. Research advances in the hexokinase gene family in higher plant [J]. Biotechnol Bull, 2012, 28(4): 19 − 26. [8] CHO J, RYOO N, KO S, et al. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.) [J]. Planta, 2006, 224(3): 598 − 611. [9] WANG Jingxue, WANG Xiaomin, GENG Siyu, et al. Correction to: genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization [J]. Planta, 2018, 248(1): 171 − 182. [10] KARNE A, RAUH B L, XIA X, et al. Expression and evolutionary features of the hexokinase gene family in Arabidopsis [J]. Planta, 2008, 228(3): 411 − 425. [11] KANDELKFIR M, DAMARIWEISSLER H, GERMAN M A, et al. Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization [J]. Planta, 2006, 224(6): 1341 − 1352. [12] JANG J, LEON P, ZHOU L, et al. Hexokinase as a sugar sensor in higher plants [J]. Plant Cell, 1997, 9(1): 5 − 19. [13] MOORE B D, ZHOU L, ROLLAND F, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling [J]. Science, 2003, 300(5617): 332 − 336. [14] ZHOU L, JANG J, JONES T L, et al. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant [J]. Proc Nat Acad Sci USA, 1998, 95(17): 10294 − 10299. [15] PEGO J V, WEISBEEK P, SMEEKENS S, et al. Mannose inhibits arabidopsis germination via a hexokinase-mediated step [J]. Plant Physiol, 1999, 119(3): 1017 − 1023. [16] ZHENG Yanjun, TIAN Li, LIU Hongtao, et al. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries [J]. Plant Growth Regul, 2009, 58(3): 251 − 260. [17] MIAO Huiying, WEI Jia, ZHAO Yanting, et al. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis [J]. J Exp Bot, 2013, 64(4): 1097 − 1109. [18] 向其柏, 刘玉莲. 中国桂花品种图志[M]. 杭州: 浙江科学技术出版社, 2008. [19] ZHANG Chao, FU Jianxin, WANG Yiguang, et al. Identification of suitable reference genes for gene expression normalization in the quantitative real-time PCR analysis of sweet Osmanthus (Osmanthus fragrans Lour.) [J]. PLoS One, 2015, 10(8): 1 − 17. [20] 秦巧平, 张上隆, 徐昌杰. 己糖激酶与植物生长发育[J]. 植物生理学报, 2003, 39(1): 1 − 8. QIN Qiaoping, ZHANG Shanglong, XU Changjie. Hexokinase and development of plants [J]. Plant Physiol, 2003, 39(1): 1 − 8. [21] HALFORD N G, PURCELL P C, HARDIE D G, et al. Is hexokinase really a sugar sensor in plants [J]. Trends Plant Sci, 1999, 4(3): 117 − 120. [22] PERATA P, MATSUKURA C, VERNIERI P, et al. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos [J]. Plant Cell, 1997, 9(12): 2197 − 2208. [23] GRANOT D, DAVIDSCHWARTZ R, KELLY G, et al. Hexose kinases and their role in sugar-sensing and plant development [J]. Front Plant Sci, 2013, 4: 44. [24] ZHANG Chao, ZHANG Lili, FU Jianxin, et al. Isolation and characterization of hexokinase genes PsHXK1 and PsHXK2 from tree peony (Paeonia suffruticosa Andrews) [J]. Mol Biol Rep, 2020, 47(1): 327 − 336. [25] HU Dagang, SUN Cuihui, ZHANG Quanyan, et al. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple [J]. PLoS Genet, 2016, 12(8): e1006273. doi: 10.1371/journal.pgen.1006273. [26] OLSSON T, THELANDER M, RONNE H. A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens [J]. J Biol Chem, 2003, 278(45): 44439 − 44447. [27] MINET M, DUFOUR M, LACROUTE F, et al. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs [J]. Plant J, 1992, 2(3): 417 − 422. [28] 李浩霞, 杨斌, 尹跃, 等. 枸杞己糖激酶基因LbHXK的克隆及表达分析[J]. 西北植物学报, 2019, 39(6): 1009 − 1015. LI Haoxia, YANG Bin, YIN Yue, et al. Cloning and expression analysis of hexokinase gene (LbHXK) from wolfberry (Lycium barbarum Linn.) [J]. Acta Bot Boreali-Occident Sin, 2019, 39(6): 1009 − 1015. [29] 赵锦, 孙美红, 胡大刚, 等. 苹果己糖激酶基因MdHXK1的克隆与表达分析[J]. 园艺学报, 2015, 42(8): 1437 − 1447. ZHAO Jin, SUN Meihong, HU Dagang, et al. Molecular cloning and expression analysis of a hexokinase gene MdHXK1 in apple [J]. Acta Hortic Sin, 2015, 42(8): 1437 − 1447. [30] 张超. 葡萄糖调控牡丹切花花青素苷合成的分子机理[D]. 北京: 北京林业大学, 2014. ZHANG Chao. Molecular Mechanism of Glucose Regulating Anthocyanin Biosynthesis of Tree Peony Cut Flower[D]. Beijing: Beijing Forestry University, 2014. 期刊类型引用(3)
1. 张昆凤,王邵军,张路路,樊宇翔,解玲玲,肖博,王郑钧,郭志鹏. 土壤细菌呼吸对西双版纳热带森林恢复的响应. 生态学报. 2023(10): 4142-4153 . 百度学术
2. 原樱其,朱仁超,杨宇,余爱华. 不同生态系统土壤呼吸影响因素研究进展. 世界林业研究. 2023(04): 15-21 . 百度学术
3. 陈炎根,胡艳静,黄莎,刘波,吴继来,王懿祥. 不同间伐强度对杉木人工林土壤呼吸速率的短期影响. 浙江农林大学学报. 2023(05): 1054-1062 . 本站查看
其他类型引用(6)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200370