留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛竹早期光诱导蛋白基因克隆及功能分析

娄永峰 高志民

桂伟峰, 温庆忠. 绿汁江下段天然灌草丛群落分布格局及环境关系分析[J]. 浙江农林大学学报, 2022, 39(1): 60-67. DOI: 10.11833/j.issn.2095-0756.20210197
引用本文: 娄永峰, 高志民. 毛竹早期光诱导蛋白基因克隆及功能分析[J]. 浙江农林大学学报, 2021, 38(1): 93-102. DOI: 10.11833/j.issn.2095-0756.20200237
GUI Weifeng, WEN Qingzhong. Analysis on the distribution pattern and the environmental relationship of natural shrub-grassland communities in the lower section of Lüzhi River[J]. Journal of Zhejiang A&F University, 2022, 39(1): 60-67. DOI: 10.11833/j.issn.2095-0756.20210197
Citation: LOU Yongfeng, GAO Zhimin. Cloning and functional analysis of early light induced protein genes of Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2021, 38(1): 93-102. DOI: 10.11833/j.issn.2095-0756.20200237

毛竹早期光诱导蛋白基因克隆及功能分析

DOI: 10.11833/j.issn.2095-0756.20200237
基金项目: 国家自然科学基金资助项目(31971736,31370588)
详细信息
    作者简介: 娄永峰,从事林木遗传育种研究。E-mail: louyf1983@163.com
    通信作者: 高志民,研究员,从事竹藤生长发育的分子基础研究。E-mail: gaozhimin@icbr.ac.cn
  • 中图分类号: S722.3;Q781

Cloning and functional analysis of early light induced protein genes of Phyllostachys edulis

  • 摘要:   目的  探究早期光诱导蛋白(ELIP)基因在竹子光保护中的作用,为进一步阐述竹子光保护机制提供参考依据。  方法  以毛竹Phyllostachys edulis实生苗为材料,在前期研究的基础上克隆毛竹ELIP基因,利用qRT-PCR技术研究其在不同光照诱导下的表达谱,同时通过在拟南芥Arabidopsis thaliana中异位表达对1个基因的功能进行初步鉴定。  结果  克隆获得了3个毛竹ELIP基因(PeELIP1、PeELIP2和PeELIP3),分别编码165、179和182个氨基酸。蛋白结构分析表明:3个PeELIPs蛋白均具有典型的捕光叶绿素a/b结合蛋白功能域,含3个α-螺旋跨膜结构,属于叶绿素a/b结合蛋白超家族。序列比对及进化分析表明:PeELIPs与水稻Oryza sativa、玉米Zea mays等单子叶植物的ELIPs相似性较高,同源性达72%以上,聚类在同一分支。qRT-PCR分析表明:3个PeELIPs基因在毛竹黄化苗中仅检测到微弱表达,光照处理使3个基因的表达量均显著上调;同时在正常毛竹实生苗叶片中,随着光照强度的增强和强光胁迫处理时间的延长,3个PeELIPs基因的表达量都显著上调。过表达PeELIP3可减缓转基因拟南芥在强光下Fv/Fm的下降幅度,但未影响转基因植株的非光化学猝灭系数。  结论  毛竹中至少存在3个PeELIPs,且其表达均受光照的诱导。过量表达PeELIP3能够减缓转基因拟南芥受光抑制的程度,具有一定的光保护作用。图8表1参40
  • 土壤有机碳储量及碳库组分变化是全球碳循环及全球变化研究的热点问题之一。陆地生态系统中土壤碳库碳储量约为2500 Pg。土壤有机碳作为土壤碳库的重要组分,主要来源于土壤有机物在不同分解阶段产生的复杂混合物,在调节植物多样性、改变土壤理化性质和土壤肥力、减缓全球温室效应等方面发挥着极其重要的生态作用[1]

    湿地生态系统具有重要的碳汇功能,在调控全球碳平衡方面具有重要作用[2]。全球湿地面积仅占陆地的5%~8%,但湿地土壤有机碳储量却占全球土壤碳储量的20%~30%[3]。近年来,国内学者对东部沿海地区的盐城滩涂湿地[4]、西北甘肃尕海湿地[5]、中部洞庭湖湿地[3]等不同地区湿地土壤碳组分特征及影响因素进行了研究,结果表明:植被是影响湿地土壤有机碳沉积的重要因素。湿地植被类型变化能够改变凋落物分布格局[6],并导致土壤微生物、水分及其他理化性质等的一系列改变[7],进而影响到土壤碳库各组分含量的积累与分配[8]。同时,植被类型与地下水埋深之间存在复杂的相互作用和反馈机制,一方面植物会通过蒸腾作用影响地下水位,另一方面地下水位影响湿地植被生长所需要的水分和养分供给[9]。因此,揭示“植被类型—地下水埋深—土壤微生物量及理化性质—土壤有机碳储量及组分”之间的耦合关系,对于研究湿地生态功能及全球变化均具有十分重要的科学意义。

    云南香格里拉纳帕海是中国典型的高原季节性湿地,孕育着丰富的生物多样性并具有显著的碳汇潜力[10]。但在自然因素与人为干扰的双重作用下,该湿地退化严重,水文条件也发生了明显改变,导致湿地植物群落与土壤环境发生改变,并影响土壤有机碳储量及各组分的积累。本研究选取不同地下水埋深的3种典型草甸群落,分析土壤有机碳储量和有机碳组分(总有机碳、微生物生物量碳、易氧化有机碳、颗粒有机碳)的变化特征,探讨湿地植物生物量、多样性及土壤性质变化对土壤有机碳储量及碳组分质量分数的影响,旨在阐明影响草甸湿地土壤有机碳储量及碳组分积累的关键影响因子。研究结果可为理解高原湿地的土壤碳循环过程提供数据支撑,同时也可为纳帕海高原湿地恢复和保护提供科学依据。

    研究区位于云南香格里拉纳帕海湿地(27°49′~27°55′N,99°37′~99°41′E),海拔3260 m,面积3100 hm2,是在石灰岩上发育而成的喀斯特型季节性湿地[11]。该区干湿季节分明,湿地水量补给主要依靠降水,年均降水量为619 mm,其中雨季为495 mm (5—10月),旱季为124 mm (11月至翌年4月)[12]。土壤类型主要为沼泽土、沼泽化草甸土和草甸土[13]

    2020年11月,在纳帕海湿地依地下水埋深由高到低选取3个典型草甸群落样地,即:疏花早熟禾Poa pratensis群落(PP)、鼠曲草Gnaphalium affine群落(GA)和云雾薹草Carex nubigena群落(CN)(表1)。每个草甸群落中随机布设3个重复样地,大小50 m×10 m (间距>200 m),每个样地内再设置4个10 m×5 m的采样方,并详细记录样方内植物种类、株数和盖度等,同时采集植物标本。在固定样方内,选取50 cm×50 cm的小样方,对地上植物沿地面齐平进行刈割,去除附着土壤,立即称取植物鲜质量,随后将上述植物装入信封带回实验室,放置于105 ℃烘箱中,杀青30 min后调整温度至75 ℃,继续烘干48 h,确保植物完全烘干后称取干质量,计算植物地上生物量[14]。依据样方调查数据计算群落的Shannon-Wiener多样性指数(H)、Pielou均匀度指数(E)、Margalef丰富度指数(DMG)和Simpson优势度指数(C)[15]

    表 1  样地基本信息
    Table 1  Basic information of the sampling sites
    群落类型纬度(N)经度(E)地下水埋深/cm优势植物盖度/%土壤类型
    疏花早熟禾群落(PP) 27°50′43.46″ 99°39′7.86″ −58.5±8.5 疏花早熟禾、牡蒿Artemisia japonica 90 草甸土
    鼠曲草群落(GA) 27°50′43.46″ 99°38′34.60″ −112.0±6.8 鼠曲草、平车前 Plantago depressa 88 草甸土
    云雾薹草群落(CN) 27°49′56.13″ 99°38′55.26″ −150.0±1.5 云雾薹草、车前P. asiatica 83 草甸土
    下载: 导出CSV 
    | 显示表格
    1.3.1   土壤样品采集

    在上述样方内挖掘土壤剖面,剖面深度为45~50 cm,先去除表面植物,分别采集0~20、20~40 cm土层土样,并将同层土壤混合,剔除根系和砾石等杂物,用四分法取约1.5 kg混合土样装入无菌自封袋中,贴好标签密封,放置于冰盒内带回实验室。共采集72份土壤样品。同时用环刀分层采集原状土测定土壤容重,共采集216个环刀样。使用水位计测量地下水深度。实验室内将新鲜土样做如下处理:约100 g用于测定土壤自然含水率;约400 g放入4 ℃冰箱冷藏保存,于1周内完成土壤微生物生物量碳测定;约1 000 g自然风干15 d后,分别通过1.00和0.25 mm孔筛,用于土壤总有机碳、易氧化有机碳、颗粒有机碳、pH、全氮、全磷、全钾等指标的测定。

    1.3.2   土壤样品测定

    土壤理化指标测定参照《土壤农业化学分析方法》[16]。土壤容重(SBD)采用环刀法测定;土壤含水量(SWC)采用烘干称量法测定;土壤pH采用电位法(水土质量比为1.0∶2.5)测定;土壤全氮(TN)采用凯氏法消煮-全自动定氮仪测定;土壤全磷(TP)采用碱熔钼锑抗比色法测定;土壤全钾(TK)采用氢氧化钠熔融-火焰光度计法测定。每个土样测定3个平行样,取其平均值。

    土壤总有机碳(TOC)采用外加热重铬酸钾氧化法[16]测定;土壤微生物生物量碳(MBC)采用硫酸钾-氯仿熏蒸法[14]测定;土壤易氧化有机碳(EOC)采用高锰酸钾氧化法[17]测定;土壤颗粒有机碳(POC)采用六偏磷酸钠分散法[18]测定。每个土样测定3个平行样,取其平均值。

    1.3.3   土壤碳储量计算

    土壤有机碳储量由土层深度、土壤容重和土壤有机碳质量分数决定,计算公式参照ELLERT等[19]

    $$ M_{{\rm{SOC}}} = \sum\limits_{i = 1}^n {(d_{{\rm{BD}}i} \times M_{{\rm{SOC}}i} \times D_i \times 0.1)}。 $$

    式中:$ M_{{\rm{SOC}}} $为土壤有机碳储量(t·hm−2);$d_{{\rm{BD}}i}$为第i层土壤容重( g·cm−3 );$M_{{\rm{SOC}}i}$为第i层土壤有机碳质量分数(g·kg−1);Di为第i土层厚度(cm)。

    采用双因素方差分析法比较不同草甸群落类型及不同土层土壤总有机碳、微生物生物量碳、易氧化有机碳、颗粒有机碳质量分数的差异性;以总有机碳及其碳组分作为响应变量,以土壤理化性质(容重、含水量、pH、全氮、全磷、全钾)和地上植物(植物多样性指数、植物地上生物量)作为解释变量进行冗余分析(RDA)。通过计算Pearson相关系数(α=0.05)检验总有机碳和各有机碳组分与土壤理化指标的相关性。所有数据使用Excel 2016整理,双因素方差分析和Pearson相关系数的计算在SPSS AU中进行,绘图使用Origin 2019完成,冗余分析在Canoco 5.0中完成。

    2.1.1   土壤有机碳储量

    土壤有机碳储量(0~40 cm土层)在不同典型草甸群落中差异显著(图1P<0.05),从大到小依次为疏花早熟禾群落(47.55 t·hm−2)、云雾薹草群落(42.28 t·hm−2)、鼠曲草群落(32.14 t·hm−2),其中疏花早熟禾群落是鼠曲草群落的1.5倍;土壤碳储量垂直分布均为随着土层加深而显著下降(P<0.05),其中0~20 cm土层碳储量均值占总量的57.10%~63.85%,鼠曲草群落垂直变化幅度最大,从上层到下层减小1.8倍。

    图 1  纳帕海典型草甸群落土壤有机碳储量变化
    Figure 1  Vertical variations in soil organic carbon storages in typical meadow communities of Napahai
    2.1.2   土壤碳组分质量分数

    图2表明:随着地下水埋深降低, 0~40 cm土层土壤总有机碳、微生物生物量碳、易氧化有机碳和颗粒有机碳均值呈减少趋势,但差异不显著(P>0.05),最大值均出现在疏花早熟禾群落(19.33 g·kg−1、256.32 mg·kg−1、15.61 g·kg−1、10.67 g·kg−1)。垂直变化幅度上,土壤碳组分在鼠曲草群落中变化幅度最大,从上层到下层分别减小2.0、1.8、1.9、2.5倍,在云雾薹草群落变幅最小,分别为1.3、1.2、1.9倍。

    图 2  纳帕海典型草甸群落土壤有机碳组分质量分数的特征
    Figure 2  Characteristics of soil organic carbon components in typical meadow communities of Napahai

    表2可知:不同典型草甸群落多样性差异显著(P<0.05)。随着地下水位加深,植物Shannon-Wiener多样性指数、Pielou均匀度指数、Margalef丰富度指数和Simpson优势度指数均显著增加,在疏花早熟禾群落中最大,分别是云雾薹草群落的2.3、1.6、2.5和1.5倍。

    表 2  纳帕海典型草甸群落地上生物量和多样性特征
    Table 2  Characteristics of above-ground biomass and diversity in typical meadow community of Napahai
    样地名称地上生物量/(g·m−2)Shannon-Wiener多样性指数Pielou均匀度指数Margalef丰富度指数Simpson优势度指数
    疏花早熟禾群落646.94±69.16 a3.71±0.02 a0.93±0.01a13.11±0.38 a0.92±0.02 a
    鼠曲草群落  337.45±43.66 b2.87±0.01 b0.87±0.06 b9.49±0.68 b0.86±0.01 b
    云雾薹草群落 229.58±1.87 c1.58±0.30 c0.57±0.09 c5.19±0.39 c0.62±0.07 c
      说明:同列不同小写字母表示不同典型草甸群落多样性差异显著(P<0.05)。数值为平均值±标准误
    下载: 导出CSV 
    | 显示表格

    表3可看出:不同典型草甸群落土壤理化性质差异显著(P<0.05)。土壤含水量、pH、全磷的最大值出现在疏花早熟禾群落(25.48%、8.35、0.51 g·kg−1),最小值在鼠曲草群落(21.41%、5.14、0.42 g·kg−1);土壤容重、全钾则与之相反,最大值出现在鼠曲草群落(1.28 g·cm−3、34.03 g·kg−1);土壤全氮在云雾薹草群落中最大(1.70 g·kg−1),在疏花早熟禾群落中最小(1.20 g·kg−1);土壤全磷在疏花早熟禾群落最大(0.51 g·kg−1)。垂直变化方面,各群落土壤理化性质随着土层加深呈现不同的变化规律。土壤容重和pH随着土层加深而增大。土壤含水量、全氧、全磷、全钾随着土层加深呈显著减小(P<0.05)。变化幅度上,土壤含水量变化幅度最大出现在云雾薹草群落,幅度为1.2倍,疏花早熟禾群落的土壤变化幅度最大,幅度为1.4倍,土壤全氮、全磷、全钾变幅度最大值分别为云雾薹草群落(2.0倍)、鼠曲草群落(1.2倍)和疏花早熟禾群落(1.0倍)。

    表 3  纳帕海典型草甸群落土壤理化性质特征
    Table 3  Characteristics of soil physicochemical properties of typical meadow communities of Napahai
    植物群落地下水位/cm土层深度/cm土壤含水量/%容重/(g·cm−3)pH全氮/(g·kg−1)全磷/(g·kg−1)全钾/(g·kg−1)
    疏花早熟禾群落−58.50~2026.66±0.85 Aa1.01±0.01 Cb8.54±0.08 Aa1.38±0.03 Ab0.54±0.03 Aa33.59±2.34 Ba
    20~4024.29±0.70 Ba1.22±0.03 Ab8.54±0.06 Aa0.85±0.08 Ba0.48±0.03 Ba35.90±0.45 Aa
    0~4025.48±0.61 Aa1.11±0.02 Bb8.35±0.37 Aa1.20±0.16 Ab0.51±0.03 Aa30.57±2.45 Ca
    鼠曲草群落  −112.00~2022.17±0.40 Ab1.23±0.12 Aa4.97±0.11 Ac1.44±0.16 Ab0.47±0.04 Ab28.03±0.57 Ab
    20~4020.65±0.37 Cc1.32±0.04 Aa5.44±0.41 Ac0.91±0.02 Ba0.38±0.03 Bb28.36±0.24 Ab
    0~4021.41±0.28 Bc1.28±0.10 Aa5.14±0.27 Ac1.31±0.17 Ab0.42±0.03 Ab28.45±1.39 Aa
    云雾薹草群落 −150.00~2025.61±0.52 Aa0.96±0.03 Cc6.87±0.25 Ab1.84±0.11 Aa0.46±0.02 Ab34.03±0.91 Aa
    20~4021.58±0.72 Bb1.28±0.04 Aa7.28±0.45 Ab0.93±0.42 Ba0.39±0.01 Cb28.78±0.20 Cb
    0~4023.59±3.70 Aa1.12±0.01 Bb7.07±0.52 Ab1.70±0.19 Aa0.42±0.01 Bb32.60±3.74 Ba
      说明:不同大写字母表示同一典型草甸群落不同土层差异显著(P<0.05),不同小写字母表示不同典型草甸群落相同土层差异显著(P<0.05)。数值为平均值±标准误
    下载: 导出CSV 
    | 显示表格

    表4可知:植物多样性、地上生物量及土壤理化性质对土壤有机碳储量及碳组分的影响因子存在一定差异。其中植物多样性和地上生物量均与有机碳储量及碳组分呈极显著(P<0.01)或显著(P<0.05)正相关;土壤含水量与总有机碳呈显著正相关(P<0.05),与颗粒有机碳呈极显著正相关(P<0.01);土壤容重与总有机碳和颗粒有机碳呈极显著负相关(P<0.01),与微生物生物量碳呈显著负相关(P<0.05);全氮与有机碳储量、微生物生物量碳呈显著正相关(P<0.05),与总有机碳和颗粒有机碳呈极显著正相关(P<0.01);全磷与微生物生物量碳呈显著正相关(P<0.05),与颗粒有机碳呈极显著正相关(P<0.01);全钾仅与颗粒有机碳呈显著正相关(P<0.05)。

    表 4  土壤有机碳储量及碳组分质量分数与环境因子之间的相关系数
    Table 4  Correlation coefficients between the soil organic carbon components and environment factors of soil
    指标Shannon-Wiener
    指数
    Pielou
    指数
    Margalef
    指数
    Simpson
    指数
    地上生
    物量
    土壤含
    水量
    容重pH全氮全磷全钾
    总有机碳   0.718**0.784**0.664**0.791**0.612**0.343*−0.596**−0.1000.585**0.2590.265
    微生物生物量碳0.645**0.654**0.616**0.649**0.564**0.290−0.372*0.1440.339*0.335*0.057
    易氧化有机碳 0.2040.1690.2720.1760.448**0.129−0.0680.097−0.1160.0860.137
    颗粒有机碳  0.773**0.767**0.775**0.765**0.859**0.620**−0.758**0.1720.482**0.439**0.370*
    有机碳储量  0.457**0.549**0.402*0.558**0.409*0.097−0.256−0.2500.381*0.0650.112
      说明:*P<0.05; **P<0.01
    下载: 导出CSV 
    | 显示表格

    以植物地上生物量、多样性指数及土壤环境因子为解释变量,土壤有机碳储量和碳组分为响应变量进行RDA分析,结果表明(图3):有机碳储量与总有机碳、微生物生物量碳夹角最小,而与Pielou均匀度指数(E)、Simpson优势度指数(C)、Margalef丰富度指数(DMG)、Shannon-Wiener多样性指数(H)、地上部生物量、全氮夹角次之,说明总有机碳与微生物生物量是土壤有机碳储量形成的主要控制者,Pielou均匀度指数、Simpson优势度指数、Margalef丰富度指数、Shannon-Wiener多样性指数、地上部生物量、全氮是土壤有机碳储量的主要影响因子。土壤碳组分与Shannon-Wiener多样性指数、Pielou均匀度指数、Margalef丰富度指数和Simpson优势度指数、全磷、土壤含水量及地上生物量的夹角最小,说明地上生物量、植物多样性、全磷、土壤含水量是促进土壤有机碳储量和碳组分的主控因子。

    图 3  纳帕海典型草甸群落土壤有机碳组分与环境因子间的冗余分析
    Figure 3  Redundancy analysis of the soil organic carbon components in typical meadow communities of Napahai

    植物残体腐质化进入土壤是有机碳的主要来源,不同植被类型具有不同的物种组成与丰富度,导致地上生物量、土壤动物和微生物活性的差异,直接影响到土壤有机碳的积累与分解,由此形成不同植被类型土壤有机碳的分布格局[20]。本研究发现:疏花早熟禾群落土壤有机碳储量最大。这与李宁云等[21]的研究结果相一致,主要原因是疏花早熟禾群落植被盖度、多样性和地上生物量最大,其植物光合作用和固碳能力最强。另外,该群落地下水埋深最高,湿地土壤有机碳与水分存在相互作用[9],土壤水分增加从而减缓氧化分解速率,进一步促进土壤有机质积累,最终促进土壤碳积累,增强其碳汇能力[22]。土壤有机碳储量最小值出现在鼠曲草群落,可能与该群落位于湖泊附近,存在季节性水位变化相关。MOCHE等[23]研究认为:反复的淹水和退水会使土壤固碳能力下降。本研究中土壤碳储量的范围为64.28~95.11 t·hm−2,超过中国大部分低海拔地区的湿地[2425],因此高原湿地碳库的重要性不言而喻。减缓纳帕海高原湿地植被退化并恢复已退化植被的工作刻不容缓。

    土壤有机碳储量主要来源于地表植物和土壤养分等,并受地上生物的矿化分解、转化、累积影响[25]。本研究发现:植物多样性指数、地上生物量和土壤全氮与土壤有机碳储量均呈正相关关系,这与梁春玲[3]研究结果相似,说明植被多样性、地上生物量和土壤全氮随地下水埋深的变化,直接调控了土壤碳在不同地下水埋深处的积累。冗余分析显示:总有机碳是土壤有机碳储量的主要贡献者,且土壤容重与碳储量呈负相关,这也与已有研究一致[23]。土壤容重越大,土壤有机碳和土壤微生物生物量碳质量分数减小,进而影响土壤有机碳储量[26]

    本研究中,3种典型草甸群落类型土壤碳储量均随着土层加深而减小,这与前人研究结果一致[21, 27]。植物生长时通过“根际沉降”使有机碳积累[26],草甸植物根系集中分布在0~20 cm土层[28],有机碳难以通过根系输入到深层土壤,因此土壤碳储量随土层加深而减小,这也表明表层土壤具有重要的碳汇功能。在3种典型草甸群落中,鼠曲草群落土壤碳储量从上层到下层的下降幅度最大,这可能是因为该群落表层具有较高的植物多样性指数和地上生物量,“根际沉降”使得有机碳富集在表层土壤,但随着土层加深,土壤含水量减少,抑制了土壤微生物的繁殖,加上采样季节正处冬季,较低的土温又降低了微生物的活性[29]

    不同典型草甸群落地表植被覆盖及土壤环境的改变,能够引起土壤碳组分的显著变化,但由于不同土壤碳组分具有不同来源与性质,其对植被类型变化的响应具有一定的变异性[30]。土壤微生物生物量碳和易氧化有机碳是土壤活性有机碳库中最重要的组分。其中,土壤易氧化有机碳周转速率最快且最先被氧化[31],而微生物生物量碳则反映了土壤中微生物和动植物残体等的数量,能够表征土壤碳、氮、磷等养分循环状况,在调控湿地物质循环过程中具有重要作用[32]。土壤颗粒有机碳相对稳定,其多少决定了该地区碳库的稳定性[33]

    本研究中,土壤总有机碳、微生物生物量碳、易氧化有机碳、颗粒有机碳最大值均出现在疏花早熟禾群落。这可能与群落盖度、植物多样性指数、地上生物量和地下水位有关。高水位导致土壤通气状况差,抑制了微生物活性及土壤呼吸,从而抑制了有机质的分解,促进了总有机碳的积累[34]。此外,在本研究中土壤总有机碳质量分数显著高于东部滨海滩涂湿地[4]、洞庭湖湿地[3]等低海拔湿地,表明纳帕海高原湿地土壤具有较大的固碳潜力。疏花早熟禾群落具有最高的地上生物量,为微生物提供了充分的碳源,从而具有较高的微生物生物量碳。疏花早熟禾群落较高的地上生物量,输入土壤的凋落物量高于鼠曲草和云雾薹草群落,促进了土壤易氧化有机碳的积累。另外,可能由于疏花早熟禾有利于湿地土壤团聚性的形成与稳定,从而使得其颗粒有机碳质量分数大于其他2个样地[35]

    3种典型草甸群落土壤总有机碳、微生物生物量碳、易氧化有机碳、颗粒有机碳质量分数均随着土层的加深而显著减小(P<0.05)。随着地下水埋深加深,容重增大,土壤有机碳分解速率随通气性减弱而减小,深层土壤碳组分质量分数减少。在本研究中,地下水埋深的高低以及深层土壤环境的差异,导致了在不同土壤层次间碳组分的相对含量及其变化趋势因群落类型而有不同变化趋势。其中,有机碳组分在鼠曲草群落中的减小幅度最大。这可能与该群落的地下水埋深高度有关,同时,纳帕海高原湿地干湿季分明,位于湖泊附近的鼠曲草群落在反复的季节性淹水和退水的水文条件下,地下水埋深波动较大,导致土壤胶体形态、土壤结构、容重和粒径等性质的改变,使原来不能分解的有机质因团聚体的分散而分解[36]。土壤总有机碳、微生物生物量碳在疏花早熟禾群落的垂直变化幅度最小,土壤易氧化有机碳、颗粒有机碳在云雾薹草群落的降幅最小。这可能是由于疏花早熟禾群落具有最高的地上生物量,为微生物提供了充分的碳源,促进了微生物特别是厌氧微生物数量的增长。云雾薹草群落地下水埋深最低,受地下水波动影响较小,表层和深层土壤结构较为稳定,故降幅最小。

    植物是草甸土壤有机碳输入的主要来源,地下水位埋深的变化能够引起湿地植物多样性、地上生物量和土壤理化性质的改变,进而显著影响湿地土壤碳组分的积累[37]。土壤总有机碳、微生物生物量碳、易氧化有机碳、颗粒有机碳均与植物多样性指数呈正相关关系,说明随着地下水埋深降低,地表植物多样性呈减少趋势,进而导致此4种碳组分质量分数随地下水埋深降低而呈现显著减少格局。朱丽等[37]在海流兔河研究发现:随着地下水位的降低,植物物种数显著减少,同时,水位埋深变化影响最大根系深度、根系形态特征和生理特性。这些特征又对根系向土壤的碳输入产生影响[38]。水位埋深降低导致根系栓质化,造成根系分泌物数量降低以及细根的周转期延长,最终减缓根系对土壤的碳输入[7]

    土壤pH作为湿地生态功能的重要调控因子,能够直接影响土壤微生物的活性,从而对有机碳组分产生显著影响[3]。但在本研究中,pH对土壤有机碳组分质量分数的解释率最低,这可能和地下水埋深有关,水位的高低决定了土壤酸性离子流失量。地下水埋深越高,土壤pH值越大[39]。本研究中,3种典型草甸植物群落所在样地的地下水位埋深差异显著(P<0.05),这也是各群落土壤pH差异显著的原因之一。全氮是影响土壤有机碳组分的主控因子之一,相关分析也表明:土壤有机碳组分(总有机碳、微生物生物量碳、颗粒有机碳)沿地下水埋深变化对全氮存在显著正效应(P<0.05)。这与尹鹏松等[40]研究结果相似。这可能由于土壤全氮增加可显著刺激土壤微生物多样性,从而促进土壤有机碳的固持[41]。孟妍君等[35]研究亦表明:土壤氮等底物利用率增加通过刺激土壤微生物多样性促进土壤有机碳的积累,并且土壤全氮可以直接影响土壤微生物的种类、数量及活性,从而影响土壤碳转化过程[37]。土壤全磷对土壤易氧化有机碳和颗粒有机碳存在正向效应,这与徐耀文等[42]研究结果相似。本研究中土壤全磷质量分数最大值出现在水位高埋深处。作为限制湿地植物生长的主要元素,土壤磷增加可通过刺激植物与微生物的生长影响土壤碳的输入,进而促进土壤碳组分积累[7]

    湿地植物群落、土壤理化性质与地下水埋深在空间尺度上存在一定的交互作用,进而导致了土壤有机碳质量分数及碳组分的空间变化。随地下水埋深的降低,3个草甸植物群落地上生物量和物种多样性指数下降1.5~2.3倍,土壤有机碳储量及碳组分质量分数降低了1.0~2.2倍,沿土层下降1.2~2.5倍。冗余分析显示:总有机碳和微生物生物量碳质量分数变化是土壤有机碳储量的主要贡献者,而植物多样性、全氮是总有机碳、微生物生物量碳的主要影响因子,植物地上生物量、土壤全磷及土壤含水量是影响颗粒有机碳和易氧化有机碳变化的主控因子。因此,探明草甸植物生物量和多样性以及水文和土壤养分供应状况的改变及其对土壤有机碳沉积的影响,是未来全球变化加剧背景下湿地土壤碳积累与分配时空格局及调控机制研究的核心内容。

    本研究采样时间处于研究区的干季,今后还可对纳帕海典型草甸湿地土壤碳储量及碳组分的干湿季变化和年变化开展研究。

  • 图  1  毛竹与拟南芥、水稻、玉米的ELIPs氨基酸序列比对

    At:拟南芥Arabidopsis thaliana;Pe:毛竹Phyllostachys edulis;Os:水稻Oryza sativa;Zm:玉米Zea mays。TM1~TM3表示3个α-螺旋跨膜结构。叶绿素a/b结合蛋白超家族的保守域用红线标出,三角形符号表示叶绿素结合位点

    Figure  1  Alignment of the deduced amino acid sequences of ELIPs from Ph. edulis, A. thaliana, O. sativa and Z. mays

    图  2  基于ELIPs氨基酸序列构建的系统进化树

    At. 拟南芥Arabidopsis thaliana;Br. 芜青Brassica rapa;Cr. 莱茵衣藻Chlamydomonas reinhardtii;Ds. 杜氏盐藻Dunaliella salina;Gb. 银杏Ginkgo biloba;Gm. 大豆Glycine max;Hv. 大麦Hordeum vulgare;Mf. 黄花苜蓿Medicago falcate;Ms. 紫花苜蓿Medicago sativa;Os. 水稻Oryza sativa;Pe. 毛竹Phyllostachys edulis;Pp. 小立碗藓Physcomitrella patens;Ps. 豌豆Pisum sativum;Pt. 毛果杨Populus trichocarpa;Sc. 齿肋赤藓Syntrichia caninervis;Si. 番茄Solanum lycopersicum;Sr. 山齿藓Syntrichia ruralis;Ta. 普通小麦Triticum aestivum;Tp. 红车轴草Trifolium pretense;Zm. 玉米Zea mays

    Figure  2  Phylogenetic tree based on the amino acid sequences of ELIPs

    图  3  PeELIPs在毛竹黄化苗中的表达分析

    Figure  3  Expression analysis of PeELIPs in etiolated seedlings of moso bamboo

    图  4  不同光照强度处理下PeELIPs的表达分析

    Figure  4  Expression analysis of PeELIPs under different light intensity

    图  5  强光(1200 µmol·m−2·s−1)胁迫下PeELIPs的表达分析

    Figure  5  Expression profile analysis of PeELIPs under high light stress (1200 µmol·m−2·s−1)

    图  6  PeELIP3转基因拟南芥PCR鉴定(A)及表达检测(B)

    Figure  6  Detection of transgenic Arabidopsis by PCR (A) and expression analysis of PeELIP3 in transgenic lines (B)

    图  7  强光(1200 µmol·m−2·s−1)对PeELIP3转基因拟南芥Fv/Fm的影响

    Figure  7  Effect of high light (1200 µmol·m−2·s−1) on Fv/Fm of PeELIP3 transgenic Arabidopsis

    图  8  PeELIP3转基因拟南芥非光化学猝灭分析

    Figure  8  Analysis of NPQ in PeELIP3 transgenic Arabidopsis

    表  1  引物序列

    Table  1.   Sequence of primers

    用途基因名称正向引物序列(5′→3′)反向引物序列(5′→3′)
    基因克隆PeELIP1ATGGCGACCAAGGTGGCCTTCTAGACGTTGACGAGCGGGGC
    PeELIP2ATGGCGACGACCATGATGGCTTACACTACTAGTTTTAGACGTTGAC
    PeELIP3ATGGCGACGACCATGATGACTTAGATGTTGACGAACGGCGC
    表达分析PeELIP1ATCATGTCCGCTGACGCCGACTTTGTGCTAGACGTTGACGAGC
    PeELIP2ACGACCATGATGGCCTCGAGTTGGGCGTCTCCGTTGGATC
    PeELIP3GCGCATCTAGCCTGTGCAATTTGTTCTGGGCCCTCACGAC
    下载: 导出CSV
  • [1] HEDDAD M, ADAMSKA I. The evolution of light stress proteins in photosynthetic organisms [J]. Comp Funct Genom, 2002, 3(6): 504 − 510.
    [2] BECK J, LOHSCHEIDER J N, ALBERT S, et al. Small one-helix proteins are essential for photosynthesis in Arabidopsis [J]. Front Plant Sci, 2017, 1(8): 7. doi: 10.3389/fpls.2017.00007.
    [3] MEYER G, KLOPPSTECH K. A rapidly light-induced chloroplast protein with a high turnover coded for by pea unclear DNA [J]. Eur J Biochem, 1984, 138(1): 201 − 207.
    [4] GRIMM B, KRUSE E, KLOPPSTECH K. Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins [J]. Plant Mol Biol, 1989, 13(5): 583 − 593.
    [5] ENGELKEN J, BRINKMANN H, ADAMSKA I. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily [J]. BMC Evol Biol, 2010, 10: 233.
    [6] HEDDAD M, NORÉN H, REISER V, et al. Differential expression and localization of early light-induced proteins in Arabidopsis [J]. Plant Physiol, 2006, 142(1): 75 − 87.
    [7] PINTO F, BERTI M, OLIVARES D, et al. Leaf development, temperature and light stress control of the expression of early light-inducible proteins (ELIPs) in Vitis vinifera L. [J]. Environ Exp Bot, 2011, 72(2): 278 − 283.
    [8] ZHUO Chunliu, CAI Jiongliang, GUO Zhenfei. Overexpression of early light-induced protein (ELIP) gene from Medicago sativa ssp. falcata increases tolerance to abiotic stresses [J]. Agron J, 2013, 105(5): 1433 − 1440.
    [9] WANG Huanli, CAO Fuliang, LI Guangping, et al. The transcript profiles of a putative early light-induced protein (ELIP) encoding gene in Ginkgo biloba L. under various stress conditions [J]. Acta Physiol Plant, 2015, 37(1): 1720.
    [10] TIMERBAEV V, DOLGOV S. Functional characterization of a strong promoter of the early light-inducible protein gene from tomato [J]. Planta, 2019, 250(4): 1307 − 1323.
    [11] HUTIN C, NUSSAUME L, MOISE N, et al. Early light-induced proteins protect Arabidopsis from photooxidative stress [J]. PNAS, 2003, 100(8): 4921 − 4926.
    [12] BERTI M, PINTO M. Expression of early light induced protein in grapevine and pea, under different conditions and its relation with photoinhibition [J]. Chin J Agric Res, 2012, 72(3): 371 − 378.
    [13] ZENG Qin, CHEN Xinbo, WOOD A J. Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity and high light [J]. J Exp Bot, 2002, 53(371): 1197 − 1205.
    [14] SÄVENSTRAND H, OLOFSSON M, SAMUELSSON M, et al. Induction of early light-inducible protein gene expression in Pisum sativum after exposure to low levels of UV-B irradiation and other environmental stresses [J]. Plant Cell Rep, 2004, 22(7): 532 − 536.
    [15] SHIMOSAKA E, SASANUMA T, HANDA H. A wheat cold-regulated cDNA encoding an early light-inducible protein (ELIP): its structure, expression and chromosomal location [J]. Plant Cell Physiol, 1999, 40(3): 319 − 325.
    [16] 周雅, 张道远. 植物早期光诱导蛋白的结构、功能及表达模式研究进展[J]. 基因组学与应用生物学, 2015, 34(6): 1339 − 1346.

    ZHOU Ya, ZHANG Daoyuan. The research progress of early light induced protein in plant [J]. Genom Appl Biol, 2015, 34(6): 1339 − 1346.
    [17] RIZZA A, BOCCACCINI A, LOPEZ-VIDRIERO I, et al. Inactivation of the ELIP1 and ELIP2 genes affects Arabidopsis seed germination [J]. New Phytol, 2011, 190(4): 896 − 905.
    [18] 杜澜, 谢锦忠, 赖秋香, 等. 遮荫对绿竹容器苗光合作用及生长的影响[J]. 生态学杂志, 2019, 38(1): 67 − 73.

    DU Lan, XIE Jinzhong, LAI Qiuxiang, et al. The effects of shading on photosynthetic characteristics and growth of Dendrocalamopsis oldhami seedling in contaniner [J]. Chin J Ecol, 2019, 38(1): 67 − 73.
    [19] 周哲宇, 徐超, 胡策, 等. 毛竹快速生长期的叶绿素荧光参数特征[J]. 浙江农林大学学报, 2018, 35(1): 75 − 80.

    ZHOU Zheyu, XU Chao, HU Ce, et al. Chlorophyll fluorescence characteristics of Phyllostachys edulis during its fast growth period [J]. J Zhejiang A&F Univ, 2018, 35(1): 75 − 80.
    [20] JIANG Zhehui, PENG Zhenhua, GAO Zhimin, et al. Characterization of different isoforms of the light-harvesting chlorophyll a/b complexes of photosystem Ⅱ in bamboo [J]. Photosynth Res, 2012, 50(1): 129 − 138.
    [21] 娄永峰. 毛竹光保护及相关基因功能研究[D]. 北京: 中国林业科学研究院, 2016.

    LOU Yongfeng. Study on Photoprotection and Related Gene Function of Phyllostachys edulis [D]. Beijing: Chinese Academy of Forestry, 2016.
    [22] ZHAO Hansheng, LOU Yongfeng, SUN Huayu, et al. Transcriptome and comparative gene expression analysis of Phyllostachys edulis in response to high light [J]. BMC Plant Biol, 2016, 16: 34.
    [23] GAO Zhimin, LIU Qing, ZHENG Bo, et al. Molecular cloning and functional analysis of violaxanthin deepoxidase gene (PeVDE) from Phyllostachys edulis [J]. Plant Cell Rep, 2013, 32(9): 1381 − 1391.
    [24] LOU Yongfeng, SUN Huayu, LI Lichao, et al. Characterization and primary functional analysis of a bamboo ZEP gene from Phyllostachys edulis [J]. DNA Cell Biol, 2017, 36(9): 747 − 758.
    [25] LOU Yongfeng, SUN Huayu, WANG Sining, et al. Expression and functional analysis of two PsbS genes in bamboo (Phyllostachys edulis) [J]. Physiol Plantarum, 2018, 163(4): 459 − 471.
    [26] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nat Genet, 2013, 45(4): 456 − 461.
    [27] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33(7): 1870 − 1874.
    [28] LIVAK K J, SCHMITTGEN D T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402 − 408.
    [29] FAN Chunjie, MA Jinmin, GUO Qirong, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2): e56573. doi: 10.1371/journal.pone.0056573.
    [30] CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J, 1998, 16(6): 735 − 743.
    [31] 韩志国. 20种湿地植物的叶绿素荧光特性[D]. 广州: 暨南大学, 2006.

    HAN Zhiguo. Chlorophyll Fluorescence of 20 Species of Wetland Plants[D]. Guangzhou: Jinan University, 2006.
    [32] LI Xianwen, LIU Huijuan, XIE Suxia, et al. Isolation and characterization of two genes of the early light-induced proteins of Camellia sinensis [J]. Photosynthetica, 2013, 51: 305 − 311.
    [33] AHRAZEM O, ARGANDOÑA J, CASTILLO R, et al. Identification and cloning of differentially expressed SOUL and ELIP genes in saffron stigmas using a subtractive hybridization approach[J]. PLoS One, 2016, 11(12): e0168736. doi: 10.1371/journal.pone.0168736.
    [34] PENG Yanhui, LIN Wuling, WEI Hui, et al. Phylogenetic analysis and seasonal cold acclimation-associated expression of early light-induced protein genes of Rhododendron catawbiense [J]. Physiol Plantarum, 2008, 132(1): 44 − 52.
    [35] 李菲, 张习敏, 王野影, 等. 复苏植物旋蒴苣苔早期光诱导蛋白的特征分析[J]. 基因组学与应用生物学, 2019, 38(3): 1162 − 1167.

    LI Fei, ZHANG Ximin, WANG Yeying, et al. Characterization analysis of early light-induced proteins (ELIPs) in resuscitation plant B. hygrometrica [J]. Genom Appl Biol, 2019, 38(3): 1162 − 1167.
    [36] BRUNO A K, WETZEL C M. The early light-inducible protein (ELIP) gene is expressed during the chloroplast-to-chromoplast transition in ripening tomato fruit [J]. J Exp Bot, 2004, 55(408): 2541 − 2548.
    [37] 陈晨. 盐生杜氏藻Dscbr基因的光保护功能及机制研究[D]. 成都: 四川大学, 2007.

    CHEN Chen. Studies on Photoprotective Function and Mechanism of Dscbr Gene in the Green Alga Dunaliella salina[D]. Chengdu: Sichuan University, 2007.
    [38] GOSS R, LEPETIT B. Biodiversity of NPQ [J]. J Plant Physiol, 2015, 172: 13 − 32.
    [39] 李先文, 谢素霞, 张苏锋, 等. 植物早期光诱导蛋白基因研究进展[J]. 植物生理学报, 2011, 47(6): 540 − 544.

    LI Xianwen, XIE Suxia, ZHANG Sufeng, et al. Research advances in the genes of early light-induced proteins of plants [J]. J Plant Physiol, 2011, 47(6): 540 − 544.
    [40] TZVETKOVA-CHEVOLLEAU T, FRANCK F, ALAWADY A E, et al. The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana [J]. Plant J, 2007, 50(5): 795 − 809.
  • [1] 应宇鑫, 陈俊宇, 姚玲窕, 许张婷, 俞振明, 开国银.  掌叶覆盆子RcF3H基因克隆及表达分析 . 浙江农林大学学报, 2024, 41(6): 1180-1188. doi: 10.11833/j.issn.2095-0756.20240326
    [2] 杨勇, 张俊红, 韩潇, 张毓婷, 杨琪, 童再康.  闽楠bZIP基因家族鉴定和脱落酸处理下的表达分析 . 浙江农林大学学报, 2024, 41(2): 275-285. doi: 10.11833/j.issn.2095-0756.20230342
    [3] 王书伟, 周明兵.  毛竹ICE基因家族的全基因组鉴定及低温胁迫下的表达模式分析 . 浙江农林大学学报, 2024, 41(3): 568-576. doi: 10.11833/j.issn.2095-0756.20230445
    [4] 孟超敏, 耿翡翡, 卿桂霞, 张富厚, 李雪林, 刘逢举.  陆地棉低磷胁迫应答基因GhGDPD1的克隆与表达分析 . 浙江农林大学学报, 2023, 40(4): 723-730. doi: 10.11833/j.issn.2095-0756.20220624
    [5] 尚林雪, 王群, 张国哲, 赵雨, 顾翠花.  紫薇LiCMB1基因的克隆及表达特性分析 . 浙江农林大学学报, 2023, 40(2): 330-337. doi: 10.11833/j.issn.2095-0756.20220333
    [6] 洪方蕾, 陆瑶, 俞世姣, 胡芷诺, 缪云锋, 钟诗蔚, 赵宏波.  桂花OfABFs基因克隆和表达分析 . 浙江农林大学学报, 2023, 40(3): 481-491. doi: 10.11833/j.issn.2095-0756.20220264
    [7] 兰智鑫, 侯丹, 吴蔼民, 林新春.  毛竹PeCIGRs基因的克隆及表达分析 . 浙江农林大学学报, 2023, 40(5): 982-990. doi: 10.11833/j.issn.2095-0756.20220761
    [8] 卓娟, 侯丹, 林新春.  毛竹PhebHLH6基因克隆及表达分析 . 浙江农林大学学报, 2023, 40(4): 731-737. doi: 10.11833/j.issn.2095-0756.20220553
    [9] 孟超敏, 耿翡翡, 卿桂霞, 周佳敏, 张富厚, 刘逢举.  陆地棉磷高效基因GhMGD3的克隆与表达分析 . 浙江农林大学学报, 2022, 39(6): 1203-1211. doi: 10.11833/j.issn.2095-0756.20220145
    [10] 王倩清, 张毓婷, 张俊红, 刘慧, 童再康.  闽楠PLR基因家族鉴定及响应激素的表达分析 . 浙江农林大学学报, 2022, 39(6): 1173-1182. doi: 10.11833/j.issn.2095-0756.20220351
    [11] 王绍良, 张雯宇, 高志民, 周明兵, 杨克彬, 宋新章.  毛竹磷转运蛋白Ⅰ家族基因鉴定及表达模式 . 浙江农林大学学报, 2022, 39(3): 486-494. doi: 10.11833/j.issn.2095-0756.20210471
    [12] 庞天虹, 钱婕妤, 付建新, 顾翠花, 张超.  桂花己糖激酶基因家族成员的序列及表达分析 . 浙江农林大学学报, 2021, 38(2): 225-234. doi: 10.11833/j.issn.2095-0756.20200370
    [13] 卜柯丽, 傅卢成, 王灵杰, 栗青丽, 王柯杨, 马元丹, 高岩, 张汝民.  毛竹茎秆快速生长期PeATG1/PeATG4基因表达分析 . 浙江农林大学学报, 2020, 37(1): 43-50. doi: 10.11833/j.issn.2095-0756.2020.01.006
    [14] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [15] 李秀云, 陈晓沛, 徐英武, 曹友志.  毛竹生长过程中纤维素合成酶基因的时空表达和功能预测 . 浙江农林大学学报, 2017, 34(4): 565-573. doi: 10.11833/j.issn.2095-0756.2017.04.001
    [16] 李冰冰, 刘国峰, 魏书, 黄龙全, 张剑韵.  烟草NtPLR1基因克隆与表达分析 . 浙江农林大学学报, 2017, 34(4): 581-588. doi: 10.11833/j.issn.2095-0756.2017.04.003
    [17] 庞景, 童再康, 黄华宏, 林二培, 刘琼瑶.  杉木纤维素合成酶基因CesA的克隆及表达分析 . 浙江农林大学学报, 2015, 32(1): 40-46. doi: 10.11833/j.issn.2095-0756.2015.01.006
    [18] 赵传慧, 周厚君, 童再康, 林二培, 黄华宏, 牛明月.  光皮桦成花相关MADS-box基因BlMADS1的克隆与表达 . 浙江农林大学学报, 2015, 32(2): 221-228. doi: 10.11833/j.issn.2095-0756.2015.02.008
    [19] 杨希宏, 黄有军, 陈芳芳, 黄坚钦.  山核桃FLOWERING LOCUS C同源基因鉴定与表达分析 . 浙江农林大学学报, 2013, 30(1): 1-8. doi: 10.11833/j.issn.2095-0756.2013.01.001
    [20] 张利阳, 温国胜, 王圣杰, 刘兆玲.  毛竹光响应模型适用性分析 . 浙江农林大学学报, 2011, 28(2): 188-193. doi: 10.11833/j.issn.2095-0756.2011.02.003
  • 期刊类型引用(1)

    1. 张爽,高启晨,张戎,宋晨珲,栗忠飞. 基于PLUS-InVEST模型碳储量时空演变及驱动因素分析——以纳帕海流域为例. 中国环境科学. 2024(09): 5192-5201 . 百度学术

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200237

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/1/93

图(8) / 表(1)
计量
  • 文章访问数:  1467
  • HTML全文浏览量:  475
  • PDF下载量:  62
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-03-26
  • 修回日期:  2020-09-09
  • 网络出版日期:  2021-01-21
  • 刊出日期:  2021-01-21

毛竹早期光诱导蛋白基因克隆及功能分析

doi: 10.11833/j.issn.2095-0756.20200237
    基金项目:  国家自然科学基金资助项目(31971736,31370588)
    作者简介:

    娄永峰,从事林木遗传育种研究。E-mail: louyf1983@163.com

    通信作者: 高志民,研究员,从事竹藤生长发育的分子基础研究。E-mail: gaozhimin@icbr.ac.cn
  • 中图分类号: S722.3;Q781

摘要:   目的  探究早期光诱导蛋白(ELIP)基因在竹子光保护中的作用,为进一步阐述竹子光保护机制提供参考依据。  方法  以毛竹Phyllostachys edulis实生苗为材料,在前期研究的基础上克隆毛竹ELIP基因,利用qRT-PCR技术研究其在不同光照诱导下的表达谱,同时通过在拟南芥Arabidopsis thaliana中异位表达对1个基因的功能进行初步鉴定。  结果  克隆获得了3个毛竹ELIP基因(PeELIP1、PeELIP2和PeELIP3),分别编码165、179和182个氨基酸。蛋白结构分析表明:3个PeELIPs蛋白均具有典型的捕光叶绿素a/b结合蛋白功能域,含3个α-螺旋跨膜结构,属于叶绿素a/b结合蛋白超家族。序列比对及进化分析表明:PeELIPs与水稻Oryza sativa、玉米Zea mays等单子叶植物的ELIPs相似性较高,同源性达72%以上,聚类在同一分支。qRT-PCR分析表明:3个PeELIPs基因在毛竹黄化苗中仅检测到微弱表达,光照处理使3个基因的表达量均显著上调;同时在正常毛竹实生苗叶片中,随着光照强度的增强和强光胁迫处理时间的延长,3个PeELIPs基因的表达量都显著上调。过表达PeELIP3可减缓转基因拟南芥在强光下Fv/Fm的下降幅度,但未影响转基因植株的非光化学猝灭系数。  结论  毛竹中至少存在3个PeELIPs,且其表达均受光照的诱导。过量表达PeELIP3能够减缓转基因拟南芥受光抑制的程度,具有一定的光保护作用。图8表1参40

English Abstract

桂伟峰, 温庆忠. 绿汁江下段天然灌草丛群落分布格局及环境关系分析[J]. 浙江农林大学学报, 2022, 39(1): 60-67. DOI: 10.11833/j.issn.2095-0756.20210197
引用本文: 娄永峰, 高志民. 毛竹早期光诱导蛋白基因克隆及功能分析[J]. 浙江农林大学学报, 2021, 38(1): 93-102. DOI: 10.11833/j.issn.2095-0756.20200237
GUI Weifeng, WEN Qingzhong. Analysis on the distribution pattern and the environmental relationship of natural shrub-grassland communities in the lower section of Lüzhi River[J]. Journal of Zhejiang A&F University, 2022, 39(1): 60-67. DOI: 10.11833/j.issn.2095-0756.20210197
Citation: LOU Yongfeng, GAO Zhimin. Cloning and functional analysis of early light induced protein genes of Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2021, 38(1): 93-102. DOI: 10.11833/j.issn.2095-0756.20200237
  • 绿色植物吸收光能主要依靠捕光色素蛋白复合体(light harvesting complex,LHC)完成,该复合体由LHC基因家族编码的蛋白结合叶绿素和类胡萝卜素组成,而这些LHC基因的表达是受光照调控的。强光可以抑制LHC基因的转录表达,同时能诱导一些本身具有光保护功能的LHC-Like基因表达,例如强光下OHPs(one helix proteins)、SEPs(stress enhanced proteins)和ELIPs(early light induced proteins)基因的表达增加[1-2]。ELIPs是核基因编码的受光诱导的叶绿体类囊体膜蛋白,最早发现于豌豆Pisum sativum黄化苗转绿过程。在此过程中ELIPs比其他的光诱导蛋白出现的更早,并在光合细胞器叶绿体发育完全后迅速消失[3-4]。ELIPs在蛋白结构上高度保守,目前已知的所有ELIPs都有3个α-螺旋跨膜结构,其中螺旋Ⅰ和螺旋Ⅲ与光系统中所有捕光叶绿素a/b结合蛋白相应部位有很高的序列同源性,因此ELIP蛋白被归入叶绿素a/b结合蛋白超家族,并根据其跨膜螺旋数量分为3个亚组[2,5]。目前,已经在拟南芥Arabidopsis thaliana[6]、葡萄Vitis vinifera[7]、紫花苜蓿Medicago sativa[8]、银杏Ginkgo biloba[9]等多种植物中克隆鉴定获得了ELIP基因。有关ELIP蛋白基因功能的研究也越来越得到研究者的重视。ELIPs是在有光的情况下产生的,在类囊体色素-蛋白质复合物的光保护或组装中起作用,也可在叶绿体到有色体的转换中发挥作用,对光合作用系统起到光修复作用[10-12]。一些ELIP基因在山墙藓Tortula ruralis中被干旱激活[13],在豌豆中能被紫外线B波段(UV-B)激活[14],在小麦Triticum aestivum中被低温激活[15]。推测ELIPs除了具有光保护功能外,可能具有适应与光抑制有关的非生物胁迫环境的功能[16]。此外,在拟南芥中发现,AtELIP1和AtELIP2基因的缺失会使其种子萌发率下降,且ELIP蛋白的抑制因子DAG1突变后,拟南芥种子萌发率则高于野生型,表明ELIP蛋白具有促进种子萌发的作用[17]。可见ELIPs在多种生理过程中可能具有重要作用。毛竹Phyllostachys edulis是重要的森林资源,生长迅速,材质优良,其光合作用一直倍受关注。人们已从竹子光合作用生理特性[18-19]、分子机理[20-25]等方面进行了大量研究。然而,对于毛竹的ELIPs尚缺乏研究。本研究以毛竹为研究对象,克隆ELIP基因,全面分析它的分子特征及表达模式,构建了PeELIP3表达载体并转化模式植物拟南芥,对基因功能进行了初步分析,以期为深入研究ELIP基因在竹子光保护中的生物学功能提供参考。

    • 以实验室培养的毛竹实生苗为材料。培养条件:温度为18~25 ℃,光周期为16 h/8 h,光照强度为250~350 µmol·m−2·s−1,待长至6个月时进行光照处理。光强处理:将毛竹实生苗在黑暗适应24 h后分别移至于不同的光照强度(0、300、600、900、1 200和1 500 µmol·m−2·s−1)下,处理2 h后取样。强光处理:将毛竹实生苗置于1 200 µmol·m−2·s−1的强光下,分别在处理后0、0.5、1.0、2.0、4.0、8.0和12.0 h时取样。黄化苗处理:在黑暗条件下培养毛竹实生黄化苗,待长至1个月时,将毛竹黄化苗放置在250~350 µmol·m−2·s−1的光照下进行处理,分别在处理后0、0.5、1.0、4.0和8.0 h取样,并以室内正常光照(250~350 µmol·m−2·s−1)条件下生长的毛竹实生苗为对照(ck)。3次重复,每次重复的每个处理4~6株毛竹实生苗,所有处理均取苗顶端第3片叶为样本,液氮速冻后置于−80 ℃保存备用。

    • 从前期毛竹基因组测序和RNA-Seq结果[22, 26]中筛选出与拟南芥ELIPs相似的基因,暂时将其认定为毛竹ELIP基因,并根据其序列设计特异性扩增引物(表1),进行目的基因扩增。利用Trizol法提取毛竹叶片的总RNA,并使用反转录试剂盒(Promage,美国)合成cDNA作为模板。PCR产物经琼脂糖凝胶DNA回收试剂盒完成回收,然后连接到pGEM-T easy Vector,转化大肠埃希菌Escherichia coli DH5α感受态细胞,筛选阳性克隆,在生工生物工程(上海)股份有限公司进行基因测序。

      表 1  引物序列

      Table 1.  Sequence of primers

      用途基因名称正向引物序列(5′→3′)反向引物序列(5′→3′)
      基因克隆PeELIP1ATGGCGACCAAGGTGGCCTTCTAGACGTTGACGAGCGGGGC
      PeELIP2ATGGCGACGACCATGATGGCTTACACTACTAGTTTTAGACGTTGAC
      PeELIP3ATGGCGACGACCATGATGACTTAGATGTTGACGAACGGCGC
      表达分析PeELIP1ATCATGTCCGCTGACGCCGACTTTGTGCTAGACGTTGACGAGC
      PeELIP2ACGACCATGATGGCCTCGAGTTGGGCGTCTCCGTTGGATC
      PeELIP3GCGCATCTAGCCTGTGCAATTTGTTCTGGGCCCTCACGAC

      对克隆获得的基因及其编码的氨基酸序列进行分析,其中编码蛋白的基本理化性质通过ExPasy(http://www.expasy.org/)在线工具获取,相应功能结构域分析使用美国国家生物信息中心(NCBI)链接的在线数据库CD Search (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi);利用Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant/#)和WoLF PSORT (https://www.genscript.com/psort/wolf_psort.html)预测亚细胞定位。此外,利用MEGA 7.0[27]提供的Clustal W工具对毛竹ELIP基因编码的氨基酸序列与其他物种ELIPs序列进行比对分析,且使用邻接法(neighbor-joining)构建系统进化树,重复次数1 000次,其他参数使用系统默认值。

    • 根据获得的毛竹ELIP基因序列的非保守区域设计定量引物(表1)。利用qRT-PCR技术分析毛竹ELIP基因在不同光照处理条件下的表达模式,反应在qTower荧光定量PCR仪上进行,体系为10.0 μL:2 × SYBR Ⅱ Green 1 Master 5.0 μL;正/反向引物各0.3 μL (10 μmol·L−1);cDNA模板1.0 μL;H2O 3.4 μL。两步法进行PCR扩增:95 ℃ 6 min;95 ℃ 10 s,62 ℃ 10 s,40个循环。选择PeNTB为内参基因[28],基因的表达变化情况采用2–ΔΔCt法分析[29]

    • 通过PCR扩增得到两端分别带有BamHⅠ和XbaⅠ酶切位点的PeELIP3基因片段,酶切回收纯化后,将目的片段连接到pCAMBIA1301载体的多克隆位点,得到重组质粒pCAMBIA1301-PeELIP3。经测序验证正确后,将植物表达载体质粒利用电击法导入农杆菌Agrobacterium tumefaciens EHA105菌株,并经PCR验证正确后用于转化拟南芥。

    • 利用农杆菌介导的浸花法[30]转化拟南芥,获得的T0代拟南芥种子经消毒后播种在含50 mg·L−1潮霉素的1/2 MS培养基中培养,初步挑选出具有抗性的转基因植株,并移栽到营养土中。提取T1代候选转基因植株的DNA,经PCR扩增PeELIP3基因序列,进一步鉴定转基因植株。在此基础上,筛选转基因植株至T3代,进行后续分析。同时,利用半定量RT-PCR检测PeELIP3在转基因拟南芥中的表达水平[23]

    • 参照韩志国等[31]方法,以3周的拟南芥植株为材料,利用IMAGING-PAM叶绿素荧光仪进行叶绿素荧光参数的测定,包括光系统Ⅱ最大光化学效率(Fv/Fm)、非光化学猝灭(NPQ)诱导曲线等。同时获取拟南芥的叶绿素荧光成像,分析野生型与转基因拟南芥植株之间的非光化学猝灭差异。

    • 经基因克隆、测序、序列分析和鉴定,从毛竹中获得3个ELIP同源基因,分别命名为PeELIP1、PeELIP2和PeELIP3。序列分析表明:3个PeELIPs基因的开放阅读框分别为498、540和549 bp,对应编码氨基酸大小分别为165、179和182个氨基酸,预测蛋白分子量为16.70、18.42和18.61 kDa。用DNAMAN分析3个PeELIPs基因编码的氨基酸序列,发现它们相互之间具有高度的相似性(80%以上),其中PeELIP2和PeELIP3之间达到91.1%。分别对3个PeELIPs蛋白的保守结构域进行预测,结果显示:它们的蛋白序列中都含有典型的捕光叶绿素a/b结合蛋白功能域,同时在该结构上都有3个α-螺旋跨膜结构,其中第1、3跨膜α-螺旋高度保守,且包括2个叶绿素结合位点:谷氨酸(Glu)残基和天冬酰胺(Asn)残基(图1),这一结构域是捕光叶绿素a/b结合蛋白的典型结构域[1, 5]。因此,3个PeELIPs均属于叶绿素a/b结合蛋白超家族成员。序列比对分析发现:3个PeELIPs与水稻Oryza sativa、玉米Zea mays等单子叶植物的ELIPs具有较高的相似性,同源性达72%以上,而与拟南芥等双子叶植物的ELIPs相似性较低,同源性低于67%。

      图  1  毛竹与拟南芥、水稻、玉米的ELIPs氨基酸序列比对

      Figure 1.  Alignment of the deduced amino acid sequences of ELIPs from Ph. edulis, A. thaliana, O. sativa and Z. mays

      用Plant-PLoc在线软件进行亚细胞定位预测显示:PeELIP1和PeELIP2蛋白定位于叶绿体,而PeELIP3蛋白则定位在线粒体中。为了使预测结果更加准确,使用蛋白亚细胞定位预测专业软件WoLF PSORT在线对PeELIPs蛋白再次进行预测,结果显示:PeELIP1、PeELIP2和PeELIP3都最有可能定位于叶绿体中,进一步支持了它们属于叶绿素a/b结合蛋白超家族成员。

    • 为揭示PeELIPs与其他物种ELIPs之间的进化关系,将PeELIPs与拟南芥、水稻、小立碗藓Physcomitrella patens等18个不同物种ELIPs的氨基酸序列进行比对分析,并构建进化树。结果(图2)表明:ELIPs进化可分为四大类,包括被子植物(双子叶植物和单子叶植物)、藻类、苔藓及裸子植物。毛竹ELIPs与水稻、玉米等单子叶植物ELIPs聚在一起,说明毛竹ELIPs与单子叶植物ELIPs蛋白具有较近的亲缘关系,然后是双子叶植物,与裸子植物、苔藓植物及藻类家族的亲缘关系较远,这与植物系统发育分类结果相一致。

      图  2  基于ELIPs氨基酸序列构建的系统进化树

      Figure 2.  Phylogenetic tree based on the amino acid sequences of ELIPs

    • 为分析光照对PeELIPs基因表达的影响,选择毛竹实生苗中的黄化苗为材料,进行光照处理(光照强度250~350 µmol·m−2·s−1),以绿色正常苗为对照(ck)。qRT-PCR结果(图3)显示:PeELIPs在毛竹黄化苗中仅检测到微量的表达,而在光照条件处理后黄化苗中3个PeELIPs的基因表达量均显著增加,其中PeELIP1和PeELIP2的表达量在光照处理的前1.0 h内快速增加,分别在0.5和1.0 h达峰值,与未光照处理的黄化苗相比,分别增加约21倍和58倍,随后出现下降趋势,至8.0 h时仍然高于ck,分别约为ck的2倍和4倍。而PeELIP3的表达量随光照处理时间的延长而上升,在4.0 h以后逐渐趋向平稳,在光照8.0 h后,其表达量约是对照的12倍,是黄化苗的20倍。

      图  3  PeELIPs在毛竹黄化苗中的表达分析

      Figure 3.  Expression analysis of PeELIPs in etiolated seedlings of moso bamboo

      为进一步研究光照对PeELIPs基因表达的影响,选择不同光照强度(0、300、600、900、1 200和1 500 µmol·m−2·s−1)处理正常生长的毛竹实生苗叶片,检测其中PeELIPs的表达情况。qRT-PCR结果(图4)显示:随着光照强度增加,PeELIPs的表达量均比对照(0 h)增加,经1 500 µmol·m−2·s−1的光强处理2 h后,PeELIP1、PeELIP2和PeELIP3的表达量分别约是光照处理前的22、18和13倍,约是正常培养条件(300 µmol·m−2·s−1)下的7、9和12倍。在强光条件(1 200 µmol·m−2·s−1)下,随着处理时间的延长,PeELIPs的表达量都是先快速上升,随后变化不大,整体趋向平稳(图5)。毛竹黄化苗和正常苗中PeELIPs在不同光照强度、不同处理时间的表达变化表明,PeELIPs基因的表达受光照的诱导,且在光照初期的表达变化更为明显,进一步说明了PeELIPs编码的蛋白符合光早期诱导表达蛋白的特点。

      图  4  不同光照强度处理下PeELIPs的表达分析

      Figure 4.  Expression analysis of PeELIPs under different light intensity

      图  5  强光(1200 µmol·m−2·s−1)胁迫下PeELIPs的表达分析

      Figure 5.  Expression profile analysis of PeELIPs under high light stress (1200 µmol·m−2·s−1)

    • 为验证PeELIPs基因的功能,选择其中1个基因PeELIP3构建了表达植物载体pCAMBIA1301-PeELIP3。将pCAMBIA1301-PeELIP3重组质粒通过农杆菌介导转化野生型拟南芥(Col-0),通过抗性筛选出的T1代拟南芥经基因组PCR和半定量RT-PCR鉴定,结果(图6A)显示:获得的10个抗性转基因拟南芥中6个株系(L2、L3、L4、L7、L8和L9)可检测到PeELIP3基因片段,而野生型拟南芥中没有检测到。随后对6个转基因株系继续进行培养,至T3代不分离后通过半定量RT-PCR进一步检测。结果(图6B)发现:PeELIP3基因在6个株系中均得到了表达,其中L3、L4、L8和L9株系中的表达量略高于L2和L7。这表明:PeELIP3基因已成功导入拟南芥中并得到转录表达,但不同株系中的表达量存在一定的差异。正常培养条件下,PeELIP3过量表达没有引起转基因拟南芥植株表型的变化。

      图  6  PeELIP3转基因拟南芥PCR鉴定(A)及表达检测(B)

      Figure 6.  Detection of transgenic Arabidopsis by PCR (A) and expression analysis of PeELIP3 in transgenic lines (B)

    • 强光处理野生型和各转基因株系拟南芥,结果(图7)发现:经过4.0 h用1 200 µmol·m−2·s−1的强光处理后,野生型和转基因拟南芥的Fv/Fm都迅速下降,但两者的下降幅度存在显著差异,其中野生型拟南芥的Fv/Fm下降43.8%,而转基因拟南芥植株的下降幅度明显低于野生型拟南芥,仅下降25.1%~35.4%。由此表明:1 200 µmol·m−2·s−1强光处理后野生型和各转基因拟南芥均受到了胁迫,但过量表达PeELIP3可降低转基因拟南芥受强光胁迫的光抑制,以减缓Fv/Fm的下降程度。

      图  7  强光(1200 µmol·m−2·s−1)对PeELIP3转基因拟南芥Fv/Fm的影响

      Figure 7.  Effect of high light (1200 µmol·m−2·s−1) on Fv/Fm of PeELIP3 transgenic Arabidopsis

      PeELIP3转基因植株进行了非光化学猝灭成像和诱导+弛豫动力学分析。非光化学猝灭成像结果显示:在185 µmol·m−2·s−1的光强下,野生型和转基因拟南芥植株的非光化学猝灭成像均显示为黄色(图8A),当光强增加至925 µmol·m−2·s−1时,两者的非光化学猝灭成像均转变成青蓝色(图8B)。这说明在弱光或强光下,野生型和转基因拟南芥植株间的非光化学猝灭没有明显差异。同时,随机选取2个株系(L3和L7)进行非光化学猝灭诱导+弛豫动力学曲线分析。结果表明:在不同的活化光(弱光和强光)下,野生型与转基因拟南芥植株的非光化学猝灭诱导+弛豫动力学曲线没有明显差异,即185 µmol·m−2·s−1活化光下,野生型和转基因拟南芥的非光化学猝灭系数变化趋势都是先快速上升到达峰值,然后开始下降(图8C);当活化光光强设置为925 µmol·m−2·s−1时,两者的非光化学猝灭系数都是迅速上升,短时间内到达峰值,然后保持平稳(图8D)。在关闭活化光,进入暗弛豫后,两者的非光化学猝灭系数都在约5 min内快速弛豫(图8C图8D)。以上结果表明:PeELIP3基因不影响转基因植株的非光化学猝灭,可能未参与热耗散相关的光保护途径。

      图  8  PeELIP3转基因拟南芥非光化学猝灭分析

      Figure 8.  Analysis of NPQ in PeELIP3 transgenic Arabidopsis

    • 早期光诱导蛋白是核编码的叶绿体蛋白,在植物中广泛分布。但不同植物间编码ELIPs的基因数量存在较大差异,部分植物仅含有1个ELIP基因,如豌豆[14]和紫花苜蓿[8],而茶树Camellia sinensis[32]、番红花Crocus sativus[33]、杜鹃Rhododendron catawbiense[34]等部分植物中则有2~7个差异表达的ELIPs基因。本研究从毛竹中克隆得到了3个PeELIPs,它们分别编码的蛋白之间具有较高的相似性,均包含叶绿素a/b结合的结构域,属于捕光叶绿素a/b结合蛋白超家族成员。此外,PeELIPs蛋白与水稻、玉米等单子叶植物的ELIPs蛋白同源性较高,聚类在一个分支,但与苔藓植物和藻类的同源性相对偏低,这说明不同物种ELIPs蛋白存在较大差异。被子植物(双子叶和单子叶植物)、苔藓植物和藻类各自聚在一起,这表明ELIPs蛋白在相同进化等级的物种间相对比较保守,与物种的进化相一致。

      大量研究结果表明:光照、温度、干旱等非生物胁迫影响ELIP基因表达调控。例如,17个旋蒴苣薹Boea hygrometrica ELIP基因中有7个基因受到干旱处理诱导[35],紫花苜蓿MsELIPs和杜鹃RcELIPs在低温胁迫中基因表达量增加[8, 34]。光照是诱导ELIP基因表达的主要因素。本研究中,毛竹黄化苗光照处理过程中,PeELIPs的表达量快速增加,在前1 h中达到顶峰,然后出现下降。这与番茄ELIP基因在其黄化苗转绿过程中的表达模式类似[36]。此外,3个毛竹PeELIPs的表达量都随着光照强度增加而上调,这表明光照诱导毛竹PeELIPs表达,其表达模式与拟南芥AtELIP1和AtELIP2[6]、葡萄VvELIP[7]、银杏GbELIP[9]基因类似。

      研究[11]表明:拟南芥chaos突变体因为不能快速积累ELIPs蛋白,对强光和低温十分敏感,在强光胁迫下拟南芥chaos突变体植株叶片白化,表现出明显的光氧化现象,但将拟南芥ELIP基因在chaos突变体中组成性表达后,转基因拟南芥的强光耐受性又恢复到野生型状态,这表明ELIP蛋白具有光保护功能。盐藻Dunaliella salina DsCBR基因转化拟南芥elip突变体后,转基因拟南芥的强光耐受性提高到野生水平,这表明DsCBR基因与其高等植物ELIP基因同样具有光保护功能[37]。过量表达PeELIP3基因可减缓转基因拟南芥在强光胁迫下Fv/Fm的下降幅度,这表明PeELIP3可降低转基因拟南芥在强光胁迫中的光抑制程度,具有一定的光保护作用。另外,PeELIP1和PeELIP2的功能如何,有待深入研究。

      热耗散过剩光能是植物重要的光保护途径,而叶绿素荧光参数非光化学猝灭系数能反映植物耗散过剩光能的能力,即光保护能力[38]。本研究中过表达PeELIP3基因不影响转基因拟南芥植株的非光化学猝灭,表明PeELIP3可能未参与非光化学猝灭的热耗散光保护途径。ELIPs光保护功能可能与其作为色素临时载体有关,强光胁迫下能加剧叶绿素结合蛋白的破坏,产生游离的叶绿素,而其容易被光敏化,形成叶绿素三聚体,叶绿素三聚体则与氧分子反应形成单线态氧,进而发生光氧化破坏,ELIP蛋白通过与叶绿素的短暂结合,防止游离叶绿素的积累,从而防止光氧化胁迫[11, 39]。同时,ELIP蛋白作为叶绿素传感器可调控叶绿素合成防止过多游离态叶绿素的积累[40]。因此,毛竹PeELIP3基因在光保护中的作用机制需要更多的研究去验证。

参考文献 (40)

目录

/

返回文章
返回