留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梅花2个PmWRKY2基因克隆及在逆境胁迫下的表达模式

王楠楠 董彬 杨丽媛 赵宏波

李雨桐, 何鑫龙, 彭一帆, 等. 藻源溶解性有机质对汞甲基化的影响[J]. 浙江农林大学学报, 2021, 38(2): 362-368. DOI: 10.11833/j.issn.2095-0756.20200146
引用本文: 王楠楠, 董彬, 杨丽媛, 等. 梅花2个PmWRKY2基因克隆及在逆境胁迫下的表达模式[J]. 浙江农林大学学报, 2021, 38(4): 812-819. DOI: 10.11833/j.issn.2095-0756.20200706
LI Yutong, HE Xinlong, PENG Yifan, et al. Influence of algal derived dissolved organic matter on mercury methylation in water[J]. Journal of Zhejiang A&F University, 2021, 38(2): 362-368. DOI: 10.11833/j.issn.2095-0756.20200146
Citation: WANG Nannan, DONG Bin, YANG Liyuan, et al. Cloning and expression analysis under adversity stress of 2 PmWRKY2 in Prunus mume[J]. Journal of Zhejiang A&F University, 2021, 38(4): 812-819. DOI: 10.11833/j.issn.2095-0756.20200706

梅花2个PmWRKY2基因克隆及在逆境胁迫下的表达模式

DOI: 10.11833/j.issn.2095-0756.20200706
基金项目: “十三五”国家重点研发计划资助项目(2019YFD1001505,2018YFD1000402);浙江省农业新品种选育重点项目(2016C02056-12)
详细信息
    作者简介: 王楠楠(ORCID: 0000-0002-2571-5980),从事抗寒分子机制研究。E-mail: 1780192738@qq.com
    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,博士生导师,从事观赏植物遗传育种等研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S685.17

Cloning and expression analysis under adversity stress of 2 PmWRKY2 in Prunus mume

  • 摘要:   目的  低温是影响梅花Prunus mume栽培应用的重要环境因素。WRKY基因是一类主要存在于植物中的转录因子,参与响应非生物胁迫等过程。了解梅花WRKY基因对非生物和脱落酸(ABA)胁迫的响应,对梅花定向育种具有重要的意义。  方法  以梅花‘骨红朱砂’Prunus mume ‘Guhong Zhusha’为材料,通过反转录PCR(RT-PCR)克隆获得了2个WRKY2转录因子,命名为PmWRKY2-1和PmWRKY2-2;采用实时荧光定量PCR(qRT-PCR)分析PmWRKY2-1和PmWRKY2-2基因在低温和干旱下的表达模式。  结果  PmWRKY2-1和PmWRKY2-2的编码区长度分别为2 223和2 220 bp,分别编码740和739个氨基酸,包含2个WRKY结构域和C2H2型锌指结构;PmWRKY2-1与PmWRKY2-2亲缘关系较远,但两者与蔷薇科Rosaceae植物欧洲甜樱桃P. avium、桃P. persica、李P. dulcis的亲缘关系较近。qRT-PCR结果显示:在低温和干旱处理下,PmWRKY2-1与PmWRKY2-2都能被诱导;脱落酸(ABA)处理后,PmWRKY2-1与PmWRKY2-2的表达显著降低。  结论  PmWRKY2-1与PmWRKY2-2可能参与调控梅花低温和干旱响应,并可能受到ABA的调控。图6表1参28
  • 联合国环境规划署《2013年全球汞评估报告》指出:中国是全球汞(Hg)的主要排放国,总排放量为全球的1/3,亚洲的3/4。表明在中国开展汞的生物地球化学研究对人体健康和生态安全具有重要意义[1]。湖泊水库等水体中的汞主要来自河流输入和大气沉降,甲基汞(MeHg)则来源于水体汞的甲基化或沉积物中MeHg的释放[2],通过生物富集作用和食物链传递的生物放大作用,最终在人体内积累,对人类安全危害极大。丁之勇等[3]发现:中国31个湖泊沉积物中汞的平均质量分数为0.076 mg·kg−1;多个湖泊沉积物中汞的地累积指数达到中度或重度污染,潜在生态风险指数和平均污染程度仅次于镉(Cd)。张杰等[4]发现:太湖流域河流表层沉积物中汞的平均质量分数为0.109 mg·kg−1,超过背景值的采样点占47.87%,潜在生态风险评价处于中等或以上。近年来中国湖泊富营养化较为普遍,藻华时有发生,对湖泊水生生态系统造成极大威胁。溶解性有机质(DOM)是水生生态系统中水体天然有机质的主要成分(占97.1%)[5],通常指能通过0.10~0.70 μm滤膜,包含不同结构、分子量的碳基有机化合物,包括单糖、氨基酸等小分子化合物和蛋白质、腐殖质等大分子化合物。随着藻类暴发性增长,大量初级生产力进入[6],水体中DOM成分随之发生变化。如河流河口的硅藻Bacillariophyta藻华可显著增加DOM中碳水化合物的相对含量[7],类蛋白质荧光组分的峰强变化规律与各浮游藻类密度呈显著相关(r>0.80)[8]。一般认为,藻类正常生长的分泌物和降解的死亡藻体[9]都会造成沉积物中有机质的异常积累,从而改变水质参数,影响化合物形态的转化。DOM的—CH3、—CH2、—OH、—COOH、—C=O、—NH2等多种活性官能团可作为天然的载体与配体,与汞离子(Hg2+)发生氧化还原、络合、螯合、沉淀等一系列反应,从而影响水环境中汞元素的赋存形态、迁移性、溶解性以及最终归趋[10]。此外,DOM还会改变沉积物的氧化还原电位(Eh)和pH[11]、微生物种群等[12]环境因子,间接影响汞的形态转化。目前关于DOM影响汞甲基化的观点仍存在着较大分歧。有学者认为:DOM所含的还原态硫官能团能对汞产生络合作用,抑制其生物甲基化过程;也有研究者发现:较小的有机质会促进Hg的生物甲基化[13],DOM可以直接或在金属离子催化作用下参与非生物甲基化过程[14]。有鉴于水体中DOM来源的复杂性及其化学结构与性质的差异性,在总量水平上研究其对汞的影响难以形成定论。因此,有必要从更微观的角度阐明DOM对汞形态转化影响的作用机制。根据极性和电荷特性,DOM可分为6个成分,即疏水性的碱性、酸性和中性DOM以及亲水性的碱性、酸性和中性DOM[15]。水体富营养化和藻华使得藻体腐解过程产生的有机物成为水环境中DOM的重要来源。本研究通过室内模拟实验,对不同腐解阶段的藻类DOM进行逐步分离,取得6个亲水和疏水性亚组分,系统研究这些亚组分对汞甲基化的影响,以期丰富淡水环境中汞的生物地球化学理论,为汞污染的控制和降低汞污染健康风险提供科学依据。

    供试藻体采自浙江省杭州市临安区某小型淡水湖泊。选取富营养化严重的湖水区域,用捞网收集水中浮藻,做好标记后放置在收纳箱内带回实验室。去除已腐烂的水藻及其他杂物后用水清洗干净,并用去离子水淋洗3次,冷冻干燥后备用。

    冷冻干燥的第0、5、10、20、30、60天各取浮藻样品充分研磨,超纯水浸提法提取DOM[2]。浸提条件为20 mL超纯水与2.0 g浮藻样品混合,黑暗、恒温(25 ℃)下振荡24 h后高速离心;取0.45 μm玻璃纤维滤膜过滤离心后的上清液作为DOM样品,结晶,4 ℃保存备用。

    取DOM结晶,与溴化钾(KBr)固体混合后制成压片。使用傅里叶变换红外光谱仪(IR Prstige-21,日本岛津)测定不同腐解时期DOM的红外光谱。为减少干扰,在分析每个样品前先测定光谱背景值,通过环境空气、二氧化碳(CO2)和水(H2O)矫正光谱。调节扫描波数精度为0.01 cm−1,波数为400~4 000 cm−1

    1.3.1   树脂柱的搭建

    用蠕动泵将DOM样品的原液通过填满树脂的树脂柱,调节四氟丙烯活塞控制液体流动速率。为了防止树脂层中出现气泡,用可拆卸的玻璃砂芯片固定树脂。

    1.3.2   树脂的预处理

    用体积分数95%的甲醇过Amberlite XAD 4和Amberlite XAD 8树脂柱,赶走柱中气泡,用蒸馏水淋洗至流出液的溶解性有机碳(DOC)质量浓度接近于0。用60 ℃的热水反复清洗阴离子交换树脂和阳离子交换树脂,直到阴离子交换树脂的浸洗水不再褐色、阳离子交换树脂的浸洗水几乎无泡沫;水洗后的阴、阳离子交换树脂用质量分数3%~5%的氢氧化钠(NaOH)和盐酸(HCl)溶液二次清洗,以碱-酸-碱的进液次序过阴离子交换树脂柱,以酸-碱-酸的次序过阳离子交换树脂柱。上述处理步骤完成后,将树脂放置于密封罐中备用[2]

    1.3.3   DOM的富集分离

    DOM分离参照LEENHEER等[16]和CHEFETZ等[17]方法。根据DOM在不同类型树脂上吸附能力的差异,将其分为疏水碱性(HOB)、疏水中性(HON)、疏水酸性(HOA)、亲水碱性(HIB)、亲水中性(HIN)、亲水酸性(HIA)6种有机组分[18]。其中HOB通过0.10 和0.01 mol·L−1 盐酸溶液反洗XAD-8树脂后获得,HOA由0.10 mol·L−1 氢氧化钠溶液反洗XAD-8树脂后获得,HON通过空气干燥XAD-8树脂并用甲醇索式提取后获得;HIB由0.10 mol·L−1氨水(NH3·H2O)反洗BIO-RAD AG-MP-50离子交换树脂后获得,HIA由3.00 mol·L−1氨水反洗DUOLITE A-7离子交换树脂后获得,HIN用纯水淋洗DUOLITE A-7离子交换树脂后获得。得到的洗脱液置于40 ℃下旋转蒸发,再经过脱盐、冷冻干燥后获得固体样品得固体样品[18]

    配制6个质量浓度梯度(100.00、200.00、400.00、800.00、1 600.00、3 200.00 ng·L−1)的氯化汞(HgCl2)溶液,测定未腐解藻体DOM各组分在不同氧气条件(好氧、厌氧)下对汞甲基化的影响。

    将装有6种DOM亚组分样品的离心管分组,整齐地放入厌氧袋中,加入配套的厌氧产气包,快速挤出原有空气后密封,室温下放置24 h。

    反应皿中加入60 mL经氮吹去氧的超纯水,分别加入DOM各组分,调节总有机碳(TOC)至10 mg·L−1,pH为7,静置1 d后,加入不同质量浓度HgCl2溶液。采用蒋红梅等[19]方法(蒸馏-乙基化结合气相色谱-冷原子荧光,CVAFS法)在BROOKS RAND测汞仪上测定甲基汞质量浓度(最低检出限为0.009 ng·L−1)。

    配制1 000.00 ng·L−1的Hg2+溶液,分别加入第0、5、10、20、30、60天DOM各亚组分,参照蒋红梅等[19]方法测定甲基汞质量浓度。

    数据处理和图表制作采用Origin 8.5及Omnic 8.2软件。MeHg测量按10%的平行操作,测定标样和空白样并做标准曲线。分析重复组数据时控制相对标准偏差低于12%。

    碱性疏水性有机物(HOB)对汞甲基化贡献最高,其次为HON和HIA,其他成分的贡献量都较小,且没有显著差异。3种疏水性有机亚组分的汞甲基化作用由强到弱依次为HOB、HON、HOA。由图1可知:不同氧气条件下,MeHg生成量均随Hg2+质量浓度增加而增加,提示HOB具有明显促进汞甲基化的能力。Hg2+低于1 600 ng·L−1时,好氧条件下MeHg转化量随Hg2+质量浓度的增加而增加,转化率则降低(由13.0%降至1.7%);厌氧条件下MeHg的转化量一直呈上升趋势,转化率则较为平稳;相比之下,厌氧条件更有利于MeHg的生成。HOA与HON一定程度上也能促进MeHg生成,但总体效果不如HOB。两者均在Hg2+质量浓度最大时达最大转化量,但MeHg转化率均随Hg2+质量浓度增加而下降。Hg2+质量浓度为3 200 ng·L−1时,3种组分的MeHg转化量厌氧条件均高于好氧条件。

    图 1  不同Hg2+质量浓度下DOM各亚组分对汞甲基化的影响
    Figure 1  Effect of DOM subcomponents on the production of MeHg at different initial Hg2+ concentrations

    3种亲水性有机亚组分中,HIB能略微促进Hg2+的甲基化;厌氧条件下甲基汞生成量较少(最大值0.17 ng·L−1);不同氧气条件下转化率均随Hg2+质量浓度增加而降低,好氧时最高值为29.0%,厌氧时最高值为13.0%。HIA在好氧条件下的MeHg转化量表现为先上升后下降(最大值为0.40 ng·L−1),厌氧条件下的转化量很小(最大值0.15 ng·L−1),转化率随Hg2+质量浓度的升高而降低。HIN对汞形态转化亦有一定的促进作用。好氧、厌氧条件下MeHg转化量随浓度变化的规律性不强,厌氧转化量更低;2种条件下转化率均大致随Hg2+浓度的升高而降低,但厌氧条件下最高转化率仅为好氧时的一半。

    以上结果表明:藻体DOM总体上可促进水体中Hg2+的甲基化反应。分离出的6个亚组分中,3个疏水性有机物对甲基汞产生的影响要强于3个亲水性有机物,以HOB的促进作用最为明显。DOM影响重金属在水体中形态变化过程的根本原因是其可以与重金属离子形成络合物,从而影响后者形态、生物有效性和毒性。有机分子的结构组成可以影响DOM对金属的亲合力。GUGGENBERGER等[20]发现:亲水性酸性物质对金属离子有较强的络合能力,是疏水性酸性物质的2~8倍,与本研究中亲水性DOM更易与溶液中的Hg2+结合、降低水体汞甲基化的结论一致。生物配体模型[21]认为:亲水性DOM与自由金属离子络合后使得自由离子平衡浓度下降,进而降低金属离子在有DOM存在时的有效性,与本研究结论也较为一致。研究发现:随着Hg2+质量浓度升高,甲基汞转化率逐渐降低,表明在较高的Hg2+质量浓度条件下,参与甲基化反应DOM的甲基供体数量不足,与LIANG等[22]结论一致。

    自然环境下,汞的甲基化特别是生物甲基化主要发生在厌氧条件下。本研究发现,不同亚组分在好氧/厌氧条件下对甲基汞产生的影响不同。对于HOB来说,厌氧条件更利于汞的甲基化反应,厌氧条件下甲基汞产生量高于好氧条件,而其他成分在好氧、厌氧条件下的甲基汞产生量则无太大变化。

    对不同腐解时长下的藻体DOM作红外光谱(图2)分析可知:未腐解的DOM各官能团种类最为丰富,随腐解时间的延长,基团簇度呈逐渐减少趋势;腐解第60天时,1 364 cm−1处的叔丁基[—C(CH3)]、2 900 cm−1处的饱和C—H键(—CH3)的伸缩和亚甲基(—CH2—)的反对称伸缩、3 400 cm−1处游离态和缔合态的羟基(O—H伸缩振动)的峰已很不明显。总体来看,腐解0~10 d的DOM官能团变化较小,较稳定。对比1 060 cm−1处的波动,可以看出不同腐解时长下C—O键的簇数明显下降。综上所述,不同腐解时长下,DOM官能团的数量和种类均发生变化,并影响各亚组分对汞的甲基化作用。

    图 2  不同腐解时期DOM红外光谱图
    Figure 2  IR spectra of DOM at different decomposition intervals

    HOB、HOA和HON为DOM的3个疏水性有机组分。由图3可知:不同腐解时间产生的HOB,汞甲基化能力不尽相同。腐解初期(0~10 d)甲基化能力呈下降趋势,第10天MeHg转化量仅为0.20 ng·L−1,10~20 d转化量大幅增加,增幅达61.9%,之后小幅波动,第60天时达最高值(0.71 ng·L−1)。腐解初期(0~10 d)HOA对汞的甲基化基本没有影响,但随腐解时间增长,HOA的汞甲基化能力逐渐加强。相比之下,HON促进汞甲基化能力总体较大;腐解初期略低,但最小值(第10天)也达到了1.20 ng·L−1,此后转化量大幅增加,第60天达到最大转化量(1.55 ng·L−1)。

    图 3  不同腐解时间DOM亚组分对MeHg生成量的影响
    Figure 3  Variation of MeHg concentrations of DOM subcomponents at different decomposition intervals

    相比而言,3个亲水性组分的汞甲基化能力略低。其中,HIB的甲基汞转化量最小,HIA和HIN随着腐解时间的增加,汞甲基化能力先增加后降低,在第60天时达到了最低,与疏水性有机组分的结果正好相反。

    以上研究结果表明,随着腐解的进行,亲水性组分的促进汞甲基化能力表现为先升高再降低乃至消失;疏水性组分则表现为先降低再逐渐升高。3种疏水性亚组分对汞甲基化的影响效应均在60 d时达到极值。随着藻类腐解进程,藻体逐渐释放出大量DOM。冯胜等[23]发现:狐尾藻Myriophyllum verticillatum腐烂过程中释放出大量类蛋白物质,DOM荧光组分和荧光峰呈先逐渐增强后逐渐降低趋势;表明在腐解过程中,DOM先增加后减少。藻类DOM以类色氨酸成分为主,可以很快被微生物利用并降解转变为类腐殖质物质[24]。本研究中,疏水性亚组分的汞甲基化能力高于亲水性亚组分,由此推测:水体DOM的疏水性亚组分是汞甲基化的主导原因,即DOM对汞甲基化的影响主要为疏水性亚组分对汞甲基化的影响。SWIETLIK等[18]研究:HON富含碳氢化合物、多碳(>5)脂肪族醇、酯、酮和芳香结构,具有比其他亚组分更加丰富的官能团(如羟基、羰基和羧基等),因此作为甲基化电子供体更为有效,促进汞甲基化能力也更强。

    DOM的6种亚组分中,疏水性亚组分的汞甲基化能力高于亲水性亚组分,其中以HOB为最,原因在于亲水性亚组分易与游离态的Hg2+发生络合,降低后者生物有效性;疏水性亚组分因表面官能团更为丰富,不易与Hg2+络合,更有利于Hg2+甲基化。随着游离Hg2+的增加,甲基供体数量逐渐减少,甲基汞转化率逐渐降低。

    富营养化藻类的DOM主要包含羟基、甲基、亚甲基、芳环C=C等官能团,随腐解时间延长,这些基团的簇度逐渐减少,使得不同腐解时期DOM各组分对汞的形态转化呈现较大差异。

    藻体腐解过程中,DOM的疏水性有机组分汞甲基化能力高于亲水性有机组分;不同腐解时长下释放的相同亚组分,其汞甲基化效应亦有所差异。

  • 图  1  2个PmWRKY2基因的扩增

    Figure  1  PCR amplification of 2 PmWRKY2 genes in P. mume

    图  2  梅花与其他物种WRKY氨基酸序列的比对

    Figure  2  Amino acid sequence of WRKY between P. mume and other species

    图  3  PmWRKY2-1和PmWRKY2-2的WRKY结构域

    Figure  3  WRKY domain displays of PmWRKY2-1和PmWRKY2-2

    图  4  PmWRKY2-1和PmWRKY2-2蛋白质的二级结构

    Figure  4  Secondary protein structure of PmWRKY2-1 and PmWRKY2-2

    图  5  梅花与其他物种WRKY氨基酸序列系统进化树分析

    Figure  5  Phylogenetic tree analysis of the amino acid sequence of P. mume and other species

    图  6  非生物和ABA处理下的PmWRKY2-1和PmWRKY2-2的表达

    Figure  6  Expression levels of PmWRKY2-1 and PmWRKY2-2 under abiotic stress and ABA

    表  1  基因克隆及表达所用引物序列

    Table  1.   Primers used in Gene clone and Quantitative real-time PCR

    用途引物名称序列(5′→3′)
    基因克隆PmWRKY2-1FATGGCTGGCATCGATGA
    PmWRKY2-1RCTACATCTGTGGTCCAAG
    PmWRKY2-2FATGGGATTTTTAAGAACC
    PmWRKY2-2RCTAGTACGATTGATGACTGCTTC
    实时荧光定量PCRQPmWRKY2-1FGTCCCCTTATCTGACAATACCTC
    QPmWRKY2-1RAAAGCGAATGAAGTATTTATGTCCT
    QPmWRKY2-2FTCCGTTGCTTCCTCCCAATGATGAC
    QPmWRKY2-2RCAAAATCTATTGGTTGTTGCTCC
    QPmEF1αSCGGATTCAATGTTAAGAATGTTGC
    QPmEF1αAAGAACTGGAGCATATCCGTTACC
    下载: 导出CSV
  • [1] 陈俊愉. 中国梅花[M]. 海口: 中国海南出版社, 1996.
    [2] 陈俊愉. 中国梅花品种图志[M]. 北京: 中国林业出版社, 1989.
    [3] 张启翔. 梅花及其杂交种根系抗寒性研究初报[J]. 北京林业大学学报, 1992, 14(增刊 4): 83 − 86.

    ZHANG Qixiang. A preliminary study on cold resistance of root system of Mei and its hybrid cultivars [J]. J Beijing For Univ, 1992, 14(suppl 4): 83 − 86.
    [4] 包满珠, 陈俊愉. 中国梅的变异与分布研究[J]. 园艺学报, 1994, 21(1): 81 − 86.

    BAO Manzhu, CHEN Junyu. Studies on the variation and distribution of Prunus mume Sieb. et Zucc. [J]. Acta Hortic Sin, 1994, 21(1): 81 − 86.
    [5] 包满珠. 我国川、滇、藏部分地区梅树种质资源及其开发利用[J]. 华中农业大学学报, 1993, 12(5): 498 − 501.

    BAO Manzhu. The germplasm resources and exploitation of Prunus mume in partial area of Sichuan, Yunnan and Tibet of China [J]. J Huazhong Agric Univ, 1993, 12(5): 498 − 501.
    [6] 王白坡, 钱银才, 沈湘林, 等. 实生梅开花结果特性的研究[J]. 浙江林学院学报, 1992, 9(1): 6 − 13.

    WANG Baipo, QIAN Yincai, SHEN Xianglin, et al. Study on flowering and fruiting charaeters of seedling-mumeplant [J]. J Zhejiang For Coll, 1992, 9(1): 6 − 13.
    [7] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors [J]. Trends Plant Sci, 2000, 5(5): 199 − 206.
    [8] VIVES-PERIS V, MARMANEU D, GÓMEZ-CADENAS A, et al. Characterization of Citrus WRKY transcription factors and their responses to phytohormones and abiotic stresses [J]. Biol Plant, 2018, 62(1): 33 − 44.
    [9] PAN Linjie, JIANG Ling. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses [J]. Mol Boil Rep, 2014, 41: 1215 − 1225.
    [10] NIU Canfang, WEI Wei, ZHOU Qiqun, et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants [J]. Plant Cell Environ, 2012, 35: 1156 − 1170.
    [11] YOKOTANI N, SATO Y, TANABE S, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance [J]. J Exp Bot, 2013, 64(6): 5085 − 5097.
    [12] LIU Guoyin, LI Bing, LI Xiang, et al. MaWRKY80 positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism [J]. Plant Physiol Biochem, 2020, 156: 155 − 166.
    [13] YAN H R, JIA H H, CHEN X B, et al. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production [J]. Plant Cell Physiol, 2014, 55(12): 2060 − 2076.
    [14] ZHANG Qixiang, CHEN Wenbin, SUN Lidan, et al. The genome of Prunus mume [J]. Nat Commun, 2012, 3: 1318. doi: 10.1038/ncomms2290.
    [15] BAO Fei, DING Anqi, CHENG Tangren, et al. Genome-wide analysis of members of the WRKY gene family and their cold stress response in Prunus mume [J]. Genes, 2019, 10(11): 911. doi: 10.3390/genes10110911.
    [16] PENG Ting, GUO Cong, YANG Jie, et al. Overexpression of Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis [J]. Plant Cell Tissue Organ Cult, 2016, 126(3): 373 − 385.
    [17] 李元元, 高志强, 曹清河. 甘薯SPF1转录因子的生物信息学分析[J]. 江苏农业学报, 2017, 33(4): 760 − 767.

    LI Yuanyuan, GAO Zhiqiang, CAO Qinghe. Bioinformatics analysis of SPF1 transcription factor of sweet potato [J]. Jiangsu Agric Sci, 2017, 33(4): 760 − 767.
    [18] CHEN Lin, YANG Yang, LIU Can, et al. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment [J]. Biochem Biophys Res Commun, 2015, 464(6): 962 − 968.
    [19] WEI Kaifa, CHEN Juan, CHEN Yanfeng, et al. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize [J]. DNA Res, 2012, 19: 153 − 164.
    [20] MENG Dong, LI Yuanyuan, BAI Yang, et al. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress [J]. Plant Physiol Biochem, 2016, 103: 71 − 83.
    [21] ROSS C A, LIU Yue, SHEN Qingxi J. The WRKY gene family in rice (Oryza sativa) [J]. J Integr Plant Biol, 2007, 49(6): 827 − 836.
    [22] SUN Chuanxin, SARA P, OLSSON H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter [J]. Plant Cell, 2003, 15(9): 2076 − 2092.
    [23] 罗昌国, 渠慎春, 张计育, 等. 湖北海棠MhWRKY40b 在几种胁迫下的表达分析[J]. 园艺学报, 2013, 40(1): 1 − 9.

    LUO Changguo, QU Shenchun, ZHANG Jiyu, et al. Expression analysis of Malus hupehensis (Pamp) Rehd. MhWRKY40b gene in response to several stresses [J]. Acta Hortic Sin, 2013, 40(1): 1 − 9.
    [24] ZHANG Ying, YU Hongjun, YANG Xueyong, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner [J]. Plant Physiol Biochem, 2016, 108: 478 − 487.
    [25] ZHU Hong, ZHOU Yuanyuan, ZHAI Hong, et al. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis [J]. Biomolecules, 2020, 10: 506. doi: 10.3390/biom10040506.
    [26] 王官凤, 吕兵兵, 王安虎, 等. 苦荞抗旱相关转录因子基因FtWRKY10的克隆及功能鉴定[J]. 农业生物技术学报, 2020, 28(4): 629 − 644.

    WANG Guanfeng, LÜ Bingbing, WANG Anhu, et al. Cloning and functional identification of drought resistance related transcription factor gene FtWRKY10 from tartary buckwheat (Fagopyrum tataricum) [J]. J Agric Biotechnol, 2020, 28(4): 629 − 644.
    [27] ZHANG Youzhi, LI Yaping, HASSAN M J, et al. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes [J]. BMC Plant Biol, 2020, 20: 150. doi: 10.1186/s12870-020-02354-y.
    [28] JIANG Wenbo, YU Diqiu. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid [J]. BMC Plant Biol, 2009, 9: 96. doi: 10.1186/1471-2229-9-96.
  • [1] 王子玥, 杨锋, 王红燕, 邢巧月, 白岩.  三叶青ThMYBPAR基因的克隆及组织差异表达分析 . 浙江农林大学学报, 2025, 42(2): 273-280. doi: 10.11833/j.issn.2095-0756.20240459
    [2] 杨钰, 王艺光, 董彬, 肖政, 赵宏波.  不同梅花品种花香成分鉴定与分析 . 浙江农林大学学报, 2024, 41(2): 262-274. doi: 10.11833/j.issn.2095-0756.20230279
    [3] 应宇鑫, 陈俊宇, 姚玲窕, 许张婷, 俞振明, 开国银.  掌叶覆盆子RcF3H基因克隆及表达分析 . 浙江农林大学学报, 2024, 41(6): 1180-1188. doi: 10.11833/j.issn.2095-0756.20240326
    [4] 尚林雪, 王群, 张国哲, 赵雨, 顾翠花.  紫薇LiCMB1基因的克隆及表达特性分析 . 浙江农林大学学报, 2023, 40(2): 330-337. doi: 10.11833/j.issn.2095-0756.20220333
    [5] 洪方蕾, 陆瑶, 俞世姣, 胡芷诺, 缪云锋, 钟诗蔚, 赵宏波.  桂花OfABFs基因克隆和表达分析 . 浙江农林大学学报, 2023, 40(3): 481-491. doi: 10.11833/j.issn.2095-0756.20220264
    [6] 孟超敏, 耿翡翡, 卿桂霞, 张富厚, 李雪林, 刘逢举.  陆地棉低磷胁迫应答基因GhGDPD1的克隆与表达分析 . 浙江农林大学学报, 2023, 40(4): 723-730. doi: 10.11833/j.issn.2095-0756.20220624
    [7] 卓娟, 侯丹, 林新春.  毛竹PhebHLH6基因克隆及表达分析 . 浙江农林大学学报, 2023, 40(4): 731-737. doi: 10.11833/j.issn.2095-0756.20220553
    [8] 兰智鑫, 侯丹, 吴蔼民, 林新春.  毛竹PeCIGRs基因的克隆及表达分析 . 浙江农林大学学报, 2023, 40(5): 982-990. doi: 10.11833/j.issn.2095-0756.20220761
    [9] 孟超敏, 耿翡翡, 卿桂霞, 周佳敏, 张富厚, 刘逢举.  陆地棉磷高效基因GhMGD3的克隆与表达分析 . 浙江农林大学学报, 2022, 39(6): 1203-1211. doi: 10.11833/j.issn.2095-0756.20220145
    [10] 缪云锋, 周丹, 董彬, 赵宏波.  桂花OfNAC转录因子鉴定及在花开放阶段的表达分析 . 浙江农林大学学报, 2021, 38(3): 433-444. doi: 10.11833/j.issn.2095-0756.20200474
    [11] 庞天虹, 钱婕妤, 付建新, 顾翠花, 张超.  桂花己糖激酶基因家族成员的序列及表达分析 . 浙江农林大学学报, 2021, 38(2): 225-234. doi: 10.11833/j.issn.2095-0756.20200370
    [12] 蒋琦妮, 付建新, 张超, 董彬, 赵宏波.  桂花OfAP1基因的克隆及表达分析 . 浙江农林大学学报, 2019, 36(4): 664-669. doi: 10.11833/j.issn.2095-0756.2019.04.005
    [13] 武丹阳, 杨洋, 李慧玉.  3个白桦BpBEE基因的克隆与表达分析 . 浙江农林大学学报, 2017, 34(1): 137-144. doi: 10.11833/j.issn.2095-0756.2017.01.019
    [14] 李冰冰, 刘国峰, 魏书, 黄龙全, 张剑韵.  烟草NtPLR1基因克隆与表达分析 . 浙江农林大学学报, 2017, 34(4): 581-588. doi: 10.11833/j.issn.2095-0756.2017.04.003
    [15] 屈亚平, 张智俊, 王超莉, 王蕾, 吴林军.  毛竹阿拉伯糖-5-磷酸异构酶的基因克隆、原核表达及纯化 . 浙江农林大学学报, 2016, 33(6): 928-934. doi: 10.11833/j.issn.2095-0756.2016.06.002
    [16] 王超莉, 张智俊, 屈亚平, 王蕾.  毛竹丙酮酸磷酸双激酶调节蛋白基因克隆、原核表达及纯化 . 浙江农林大学学报, 2015, 32(5): 749-755. doi: 10.11833/j.issn.2095-0756.2015.05.014
    [17] 侯传明, 郑雅文, 王正加, 徐英武.  山核桃MADS-like基因的克隆与分析 . 浙江农林大学学报, 2015, 32(1): 33-39. doi: 10.11833/j.issn.2095-0756.2015.01.005
    [18] 庞景, 童再康, 黄华宏, 林二培, 刘琼瑶.  杉木纤维素合成酶基因CesA的克隆及表达分析 . 浙江农林大学学报, 2015, 32(1): 40-46. doi: 10.11833/j.issn.2095-0756.2015.01.006
    [19] 王国立, 安华明, 秦巧平, 李孟娇, 刘真真, 陈佳莹, 周倩, 张岚岚.  柑橘果实成熟特异基因CsPMEI/InvI的克隆与序列分析 . 浙江农林大学学报, 2013, 30(3): 336-342. doi: 10.11833/j.issn.2095-0756.2013.03.005
    [20] 黄程前, 宋丽青, 童再康, 程龙军.  光皮桦BlFTL基因的克隆和表达模式 . 浙江农林大学学报, 2013, 30(3): 343-349. doi: 10.11833/j.issn.2095-0756.2013.03.006
  • 期刊类型引用(2)

    1. 胡斌,王沛芳,张楠楠,包天力,金秋彤. 洪泽湖溶解态有机质与重金属汞的结合特性. 环境科学. 2022(05): 2510-2517 . 百度学术
    2. 杜晓丽,郑泽东,陈梦瑶. 不同下垫面雨水径流溶解性有机物特性. 环境科学学报. 2022(11): 123-130 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200706

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/4/812

图(6) / 表(1)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  211
  • PDF下载量:  48
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-11-11
  • 修回日期:  2021-03-12
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-08-20

梅花2个PmWRKY2基因克隆及在逆境胁迫下的表达模式

doi: 10.11833/j.issn.2095-0756.20200706
    基金项目:  “十三五”国家重点研发计划资助项目(2019YFD1001505,2018YFD1000402);浙江省农业新品种选育重点项目(2016C02056-12)
    作者简介:

    王楠楠(ORCID: 0000-0002-2571-5980),从事抗寒分子机制研究。E-mail: 1780192738@qq.com

    通信作者: 赵宏波(ORCID: 0000-0003-4714-8240),教授,博士,博士生导师,从事观赏植物遗传育种等研究。E-mail: zhaohb@zafu.edu.cn
  • 中图分类号: S685.17

摘要:   目的  低温是影响梅花Prunus mume栽培应用的重要环境因素。WRKY基因是一类主要存在于植物中的转录因子,参与响应非生物胁迫等过程。了解梅花WRKY基因对非生物和脱落酸(ABA)胁迫的响应,对梅花定向育种具有重要的意义。  方法  以梅花‘骨红朱砂’Prunus mume ‘Guhong Zhusha’为材料,通过反转录PCR(RT-PCR)克隆获得了2个WRKY2转录因子,命名为PmWRKY2-1和PmWRKY2-2;采用实时荧光定量PCR(qRT-PCR)分析PmWRKY2-1和PmWRKY2-2基因在低温和干旱下的表达模式。  结果  PmWRKY2-1和PmWRKY2-2的编码区长度分别为2 223和2 220 bp,分别编码740和739个氨基酸,包含2个WRKY结构域和C2H2型锌指结构;PmWRKY2-1与PmWRKY2-2亲缘关系较远,但两者与蔷薇科Rosaceae植物欧洲甜樱桃P. avium、桃P. persica、李P. dulcis的亲缘关系较近。qRT-PCR结果显示:在低温和干旱处理下,PmWRKY2-1与PmWRKY2-2都能被诱导;脱落酸(ABA)处理后,PmWRKY2-1与PmWRKY2-2的表达显著降低。  结论  PmWRKY2-1与PmWRKY2-2可能参与调控梅花低温和干旱响应,并可能受到ABA的调控。图6表1参28

English Abstract

李雨桐, 何鑫龙, 彭一帆, 等. 藻源溶解性有机质对汞甲基化的影响[J]. 浙江农林大学学报, 2021, 38(2): 362-368. DOI: 10.11833/j.issn.2095-0756.20200146
引用本文: 王楠楠, 董彬, 杨丽媛, 等. 梅花2个PmWRKY2基因克隆及在逆境胁迫下的表达模式[J]. 浙江农林大学学报, 2021, 38(4): 812-819. DOI: 10.11833/j.issn.2095-0756.20200706
LI Yutong, HE Xinlong, PENG Yifan, et al. Influence of algal derived dissolved organic matter on mercury methylation in water[J]. Journal of Zhejiang A&F University, 2021, 38(2): 362-368. DOI: 10.11833/j.issn.2095-0756.20200146
Citation: WANG Nannan, DONG Bin, YANG Liyuan, et al. Cloning and expression analysis under adversity stress of 2 PmWRKY2 in Prunus mume[J]. Journal of Zhejiang A&F University, 2021, 38(4): 812-819. DOI: 10.11833/j.issn.2095-0756.20200706
  • 梅花Prunus mume是中国十大传统名花,在中国有3 000多年栽培历史,江南地区花期为2月左右[1]。梅花适应性较强,耐高温、较耐低温和干旱。在年均气温为16~23 ℃的地区生长最好,根系不耐−8 ℃以下的低温[2-3]。梅花适栽范围介于自然分布区和历史分布区之间,北界为西藏经四川至甘肃天水,陕西宝鸡、西安,河南洛阳,最后到山东烟台,通过海岸线与自然分布区相接,以长江流域为集中赏梅地带[2, 4]。在华北、东北和西北等北方地区不能露地越冬,在江南地区,春季的极端低温(低于−3 ℃)则会对花(蕾)造成伤害,极大地影响观赏价值。因此,抗寒育种一直是梅花育种的重要方向[4-6]。WRKY转录因子是一类主要存在于植物中的锌指型转录因子,在植物响应生物胁迫与非生物胁迫的过程中起着重要作用。根据WRKY结构域数量和锌指结构特征,WRKY家族可分为3类:I类包含2个WRKY结构域和1个CX4−5CX22−23 HXH (C2H2)型锌指结构;Ⅱ类包含1个WRKY结构域和1个CX4−5CX22−23HXH (C2H2)型锌指结构;Ⅲ类包含1个WRKY结构域和1个CX7CX23HXC (C2HC)型锌指结构[7]。WRKY家族参与了广泛的生物过程,包括种子萌发、植物发育和植物激素信号传递等[8]。研究表明:WRKYs最重要的功能之一是参与防御非生物胁迫[9],可显著提高小麦Triticicum aestivum[10]、水稻Oryza sativa[11]等的耐寒性和香蕉Musa acuminate[12]、棉花Gossypium hirsutum[13]等的抗旱性。近年来,随着梅花基因组正式公布[14],关于梅花抗寒和抗旱基因的挖掘和研究逐渐展开,这为深入研究梅花抗寒、抗旱等机制提供了重要的基础。梅花中共鉴定出58个WRKY成员,PmWRKYs在梅花的不同组织(根、茎、叶、花和果实)中有不同程度的表达,其中17个PmWRKYs可能是调控梅花抗寒性的潜在转录因子[15]。本研究以梅花品种‘骨红朱砂’‘Guhong Zhusha’为材料,采用反转录PCR(RT-PCR)技术克隆获得了2个PmWRKY2转录因子,通过生物信息学分析和同源基因序列比对,检测PmWRKY2基因在不同非生物胁迫下的表达模式,以期为后续开展WRKY转录因子在梅花抗寒和抗旱方面的作用机制研究奠定基础。

    • 梅花‘骨红朱砂’来自浙江农林大学梅花种质资源圃。采集生长势一致,无病虫害的1年生枝条,插于加入清水的培养瓶中,参照PENG等方法[16]处理,湿度为50%,光周期为16 h/8 h。低温(2 ℃)处理组取样时间为0(ck)、1、2、4、6、12、24、48、72 h。采用200 mmol·L−1的甘露醇溶液模拟干旱处理,取样时间为0(ck)、3、6、12、24、36、48 h。采用100 μmol·L−1脱落酸(ABA)处理,取样时间为0(ck)、3、6、12、24、36、48 h。所有新鲜样品采集后立即用液氮速冻,保存于−80 ℃,3次生物学重复。

    • RNA的提取采用购自天津诺禾致源公司的UltraClean Polysaccharide and Phenol Plant RNA Purification Kit,方法参照试剂盒的提取说明书。cDNA的合成根据TAKARA PrimeScript™ RT Master Mix (Perfect Real Time)说明书在冰上进行。

    • 通过梅花基因组和表达谱数据获得PmWRKY2-1和PmWRKY2-2序列,利用Prime 5.0设计特异性引物(表1),以‘骨红朱砂’叶片cDNA为模板,利用r-Taq DNA聚合酶进行PCR扩增。扩增条件为:95 ℃预变性5 min;95 ℃变性30 s,54 ℃退火30 s,72 ℃延伸3 min,35个循环;72 ℃延伸10 min。PCR扩增产物经切胶回收试剂盒回收后连接到pMD18-T载体(Takara公司,大连)中,转化大肠埃希菌Escherichia coli DH5α感受态细胞后挑取阳性克隆,经PCR验证后送往杭州有康科技有限公司测序。

      表 1  基因克隆及表达所用引物序列

      Table 1.  Primers used in Gene clone and Quantitative real-time PCR

      用途引物名称序列(5′→3′)
      基因克隆PmWRKY2-1FATGGCTGGCATCGATGA
      PmWRKY2-1RCTACATCTGTGGTCCAAG
      PmWRKY2-2FATGGGATTTTTAAGAACC
      PmWRKY2-2RCTAGTACGATTGATGACTGCTTC
      实时荧光定量PCRQPmWRKY2-1FGTCCCCTTATCTGACAATACCTC
      QPmWRKY2-1RAAAGCGAATGAAGTATTTATGTCCT
      QPmWRKY2-2FTCCGTTGCTTCCTCCCAATGATGAC
      QPmWRKY2-2RCAAAATCTATTGGTTGTTGCTCC
      QPmEF1αSCGGATTCAATGTTAAGAATGTTGC
      QPmEF1αAAGAACTGGAGCATATCCGTTACC
    • 采用在线软件BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 进行基因序列比对分析,用ORF finder(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)在线分析开放阅读框,运用ProtParam 在线软件(http://web.expasy.org/protparam/)预测编码蛋白质的分子量、理论等电点;利用 SOPMA 在线工具(https://npsa-prabi.ibcp.fr/cgi-bin/secpred_sopma.pl)分析PmWRKY2蛋白质的二级结构组成;利用WOLFPSORT在线软件(https://psort.hgc.jp/cgi-bin/runpsort.pl)预测基因的亚细胞定位;利用 DNAMAN 9.0软件对梅花PmWRKY2蛋白质与其他物种WRKY蛋白质进行比对分析;使用ClutsalX-v1.83程序进行多序列比对,然后将比对结果输入到MEGA 6.0软件中,利用邻接法(neighbor-joining, NJ)构建系统发育树,Bootstrap值取1 000次。

    • 以不同处理的叶片为模板,反转录为cDNA,并进行实时荧光定量PCR。利用Prime 5.0设计PmWRKY2-1和PmWRKY2-2的特异性引物,以梅花PmEF1α为内参基因。反应体系为SYBR Premix Ex Taq 酶(Takara,大连)10.0 μL,cDNA 2.0 μL,上下游引物(10 μm·L−1)各0.8 μL,双蒸水 6.4 μL,每个样品设置3次重复。反应程序为两步法:95 ℃预变性30 s,95 ℃变性5 s,60 ℃复性30 s,共40个循环;然后以95 ℃持续5 s,60 ℃持续1 min,95 ℃持续15 s作为溶解曲线分析程序,最后根据$ {2^{ - \Delta \Delta {C_{\rm{t}}}}} $法计算目的基因的相对表达量。

    • 利用特异性引物进行PCR扩增,经过连接、转化、测序后获得编码序列(CDS)。测序结果显示:PmWRKY2-1和PmWRKY2-2的CDS长度分别为2 223和2 220 bp(图1),编码的氨基酸数目分别为740和739个,蛋白质分子量分别为79.94和80.98 kD,理论等电点分别为5.65和5.82。不稳定系数分别为53.93和53.82,脂肪指数分别为54.18和59.53,预测它们为不稳定蛋白质。总平均亲水系数(GRAVY)分别为−0.774和−0.743,属于亲水性蛋白质。亚细胞定位预测结果显示:PmWRKY2-1和PmWRKY2-2均位于细胞核。

      图  1  2个PmWRKY2基因的扩增

      Figure 1.  PCR amplification of 2 PmWRKY2 genes in P. mume

      氨基酸序列比对结果显示(图2):梅花PmWRKY2-1和PmWRKY2-2的同源性仅为45.87%,与拟南芥Arabidopsis thaliana的AtWRKY2相似性分别为51.26%和32.07%;其中PmWRKY2-1与欧洲甜樱桃P. avium(XP_021826759.1)、桃P. persica(XP_007206427.1)的WRKY2同源性分别为98.65%,98.78%;PmWRKY2-2与甜李P. dulcis(XP_034218428.1)、桃(XP_007207009.2)的WRKY2同源性分别为98.51%,98.11%,与月季Rosa chinensis(XP_024188041.1)WRKY2同源性为77.97%。进一步分析发现:梅花PmWRKY2-1和PmWRKY2-2氨基酸序列与其他植物氨基酸序列一样,均包含2个WRKY结构域和1个CX4−5CX22−23 HXH(C2H2)型锌指结构,属于Group Ⅰ (图3)。

      图  2  梅花与其他物种WRKY氨基酸序列的比对

      Figure 2.  Amino acid sequence of WRKY between P. mume and other species

      图  3  PmWRKY2-1和PmWRKY2-2的WRKY结构域

      Figure 3.  WRKY domain displays of PmWRKY2-1和PmWRKY2-2

    • 蛋白质二级结构预测结果显示(图4):PmWRKY2-1蛋白质的二级结构中包含75.68%的无规则卷曲、10.81%的α螺旋、10.41%的扩展长链和3.11%的β转角结构;PmWRKY2-2蛋白质的二级结构中包含74.02%的无规则卷曲、13.80%的α螺旋、8.80%的扩展长链和3.38%的β转角结构。

      图  4  PmWRKY2-1和PmWRKY2-2蛋白质的二级结构

      Figure 4.  Secondary protein structure of PmWRKY2-1 and PmWRKY2-2

    • 利用MEGA 6.0软件构建梅花PmWRKY2-1和PmWRKY2-2氨基酸序列的系统进化树(图5)。结果显示:梅花PmWRKY2-1与PmWRKY2-2的相似性较低,但与一些蔷薇科Rosaceae植物的亲缘关系都较近;其中PmWRKY2-1与桃(XP_007206427.1)、欧洲甜樱桃(XP_021826759.1)的WRKY亲缘关系较近,PmWRKY2-2与甜李(XP_034218428.1)、桃(XP_007207009.2)的WRKY氨基酸聚为一类,与麻疯树Jatropha curcas (XP_021629940.1)、酸枣Ziziphus jujube(XP_015875770.1)、蔓花生Arachis duranensis(XP_015962000.1)等SUSIBA2-Like(sugar signaling in barley)基因的氨基酸序列也有一定的相似性。

      图  5  梅花与其他物种WRKY氨基酸序列系统进化树分析

      Figure 5.  Phylogenetic tree analysis of the amino acid sequence of P. mume and other species

    • 低温和干旱(甘露醇)处理后,PmWRKY2-1和PmWRKY2-2表达均发生显著变化(图6)。在低温处理下,PmWRKY2-1在2 和12 h时表达量最高,分别是对照的5.0和4.4倍,之后呈现下降的趋势;PmWRKY2-2的表达量呈现先上升后下降的趋势,在6 h时达到最大值,是对照的2.4倍。在干旱处理下,PmWRKY2-1和PmWRKY2-2的表达模式均为先上升后下降的趋势,PmWRKY2-1的表达量在12 h达到最大且为对照的53.9倍,之后便呈现下降的趋势;PmWRKY2-2的表达量在6 h处达到最大,为对照的9.7倍,之后呈现下降趋势。在脱落酸(ABA)处理下,处理48 h前,PmWRKY2-1和PmWRKY2-2均显著下调(P<0.05),说明其表达可被ABA抑制。

      图  6  非生物和ABA处理下的PmWRKY2-1和PmWRKY2-2的表达

      Figure 6.  Expression levels of PmWRKY2-1 and PmWRKY2-2 under abiotic stress and ABA

    • 植物在生长发育的过程中会受到多种因素的影响,而低温与干旱是常见的影响植物生长发育、果实品质以及地理分布的非生物胁迫因素,严重时可能会导致植物死亡。植物在长期适应进化的过程中逐渐形成了复杂而高效的应答机制,从分子、生理、细胞和生化等多方面做出适应性调整,以抵御和适应低温、干旱等胁迫。在植物响应低温、干旱胁迫过程中,普遍存在于植物中的WRKY转录因子发挥了重要作用[17],目前已在拟南芥[7]、番茄Solanum lycopersicum[18]、玉米Zea mays [19]、苹果Malus domestica[20]、水稻[21]等大多数物种中均有报道。

      本研究克隆获得的PmWRKY2-1和PmWRKY2-2基因都含有2个WRKY结构域,C端都为C2H2型锌指结构;但2个蛋白质序列的差异较大,相似性仅为45.87%;与一些蔷薇科植物的亲缘关系较近;PmWRKY2-1与拟南芥AtWRKY2的相似性为51.26%,PmWRKY2-2为32.07%。值得一提的是,PmWRKY2-2与麻风树(XP_021629940.1)、酸枣(XP_015875770.1)、蔓花生 (XP_015962000.1)等植物的SUSIBA2-Like氨基酸序列具有一定的相似性,有研究[22]报道SUSIBA2属于WRKY转录因子超家族并参与碳水化合物合成代谢。

      罗昌国等[23]发现:低温处理下湖北海棠Malus hupehensis MhWRKY40b基因表达量呈现先上升后下降的趋势;低温处理下黄瓜Cucumis sativus CsWRKY46[24]和水稻OsWRKY76[11]也呈现先上升后下降的表达趋势,与本研究中梅花PmWRKY2-1和PmWRKY2-2基因对低温的响应趋势一致。干旱处理下PmWRKY2-1和PmWRKY2-2的表达量先显著上升后下降,最高表达量分别上调了约50倍和10倍。ZHU等[25]发现:拟南芥中过表达甘薯Ipomoea batatas IbWRKY2和苦荞[26]Fagopyrum tataricum FtWRKY10能提高转基因植株的抗旱性;ZHANG等[27]发现:吲哚-3-乙酸(indole-3-acetic acid)处理白车轴草Trifolium repens,其WRKY2作为干旱响应基因可以提高白车轴草的耐旱性。JIANG等[28]发现:ABI5、ABI3、ABA2和ABA3等ABA途径基因诱导拟南芥2个WRKY2的表达从而介导种子萌发和萌发后的发育停滞。本研究中,ABA处理下,梅花2个PmWRKY2基因的表达都被抑制,预测启动子序列中的PmWRKY2-1和PmWRKY2-2分别含有1个和7个ABA响应元件ABRE,推测这2个基因可能通过ABA调控低温相关基因的表达进而调控梅花的耐寒性,但这些推论还需进一步验证。

参考文献 (28)

目录

/

返回文章
返回