-
森林土壤的物理、化学及生物学性质综合表现为土壤肥力。土壤肥力的高低影响着森林植物的分布、生长以及群落的组成、结构和生产力,植物又通过凋落物、根系分泌物等反作用于土壤,改变着土壤的物理、化学及生物学性质,由此形成一个动态的相互作用机制,提升森林生态系统结构与功能[1-3]
毛竹Phyllostachys edulis属于禾本科Gramineae刚竹属Phyllostachys植物,原产于中国亚热带地区,以地下竹鞭进行无性繁殖,具有扩展蔓延速度快和竞争力强的特点。从20世纪90年代开始,毛竹因其具有良好的竹材、竹芛等多种用途而作为笋材两用的经济树种在中国亚热带地区大面积种植,为山区农民脱贫致富做出贡献[4]。随着中国经济的发展,毛竹林经营成本不断提高,而竹材价格反而降低,因此,很多竹农已经放弃了对毛竹林的经营管理,导致失去管理的毛竹林无序扩张蔓延。近年来,这种趋势不断加剧。在许多地方由于毛竹地下竹鞭扩张渗透到阔叶林等相邻森林中,迅速成林并侵占其他物种的生境,形成毛竹单优势群落,导致植物种类减少,群落层次结构简化,生物多样性显著降低,土壤物理性质、化学性质和土壤微生物发生显著变化,整个区域生态系统退化[5-9],威胁到生物多样性保护和区域生态安全。因此,控制毛竹林无序蔓延扩张,开展毛竹林皆伐后生态恢复效果研究,已受到全社会广泛关注。2015年,为控制和减少毛竹入侵对天目山国家级自然保护区生态破坏,经审批,对该区域部分入侵毛竹林进行皆伐。本研究在毛竹林皆伐区和未伐区设置样地进行比较研究,探讨毛竹林皆伐后土壤自然恢复效果,为天目山毛竹林入侵区域生态修复提供技术支持,为亚热带毛竹林入侵区生态修复提供借鉴。
-
由表1可见:在0~10 cm表层土壤中,ck处理的土壤容重分别比CR、UR处理高31%和 14%;UR处理土壤容重略高于CR处理, 但无显著差异;UR、CR处理的土壤总孔隙度、毛管持水量、田间持水量和饱和持水量均高于ck处理,但无显著差异。在10~20 cm土壤中,ck处理土壤容重分别比CR、UR处理高39%和37%;ck、CR和UR处理的总孔隙度无显著差异;UR处理的毛管持水量、田间持水量和饱和持水量均高于CR和ck处理(P<0.05)。
表 1 不同处理的土壤物理性质
Table 1. Soil physical properties of different treatments
土层/cm 处理 容重/(g·cm−3) 总孔隙度/% 毛管持水量/(g·kg−1) 田间持水量/(g·kg−1) 饱和持水量/(g·kg−1) 0~10 CR 0.67±0.02 b 58.1±2.3 a 470±17 a 434±18 a 654±24 a UR 0.77±0.06 b 52.2±1.9 a 519±40 a 464±35 a 670±51 a ck 0.88±0.04 a 52.2±1.3 a 443±20 a 406±18 a 605±29 a 10~20 CR 0.67±0.02 b 61.4±1.7 a 487±15 b 447±14 b 682±24 b UR 0.68±0.05 b 58.3±1.8 a 596±47 a 527±39 a 767±59 a ck 0.93±0.03 a 54.0±1.3 a 439±22 b 394±19 b 610±28 b 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) -
由表2可见:在0~10 cm土壤中,UR处理的pH显著低于 CR和ck处理(P<0.05),UR处理的有机碳、全氮、全磷和碱解氮质量分数均显著高于CR和ck处理,UR处理的有机碳质量分数比CR和ck处理高99%和117%,全氮高93%和123%,全磷高57%和87%,碱解氮高95%和107%。ck处理的速效钾质量分数显著低于UR和CR(P<0.05)。在10~20 cm土壤中,UR处理的pH略低于CR和ck处理,UR处理的有机碳、全氮、全磷和碱解氮质量分数均显著高于CR和ck处理(P<0.05);UR处理的全钾质量分数显著低于CR和ck处理,ck处理的速效钾质量分数显著低于UR和CR处理 (P<0.05)。
表 2 不同处理的土壤化学性质
Table 2. Soil chemical properties of different treatments
土层/cm 处理 pH 有机碳/
(g·kg−1)全氮/
(g·kg−1)全磷/
(g·kg−1)全钾/
(g·kg−1)碱解氮/
(mg·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)0~10 CR 5.09±0.06 a 36.86±2.62 b 3.27±0.24 b 0.37±0.02 b 25.29±1.61 a 101±7 b 1.4±0.1 b 189±13 a UR 4.73±0.06 b 73.25±7.25 a 6.30±0.54 a 0.58±0.04 a 16.58±0.43 b 96±11 a 1.9±0.1 a 195±15 a ck 5.03±0.09 a 33.73±2.78 b 2.82±0.23 b 0.31±0.01 b 22.67±1.10 a 95±5 b 2.1±0.1 a 105±13 b 10~20 CR 5.26±0.08 a 31.11±2.43 b 2.71±0.21 b 0.34±0.02 b 26.31±1.78 a 95±9 b 1.1±0.1 b 169±11 a UR 4.98±0.09 a 53.68±6.03 a 4.62±0.47 a 0.55±0.05 a 17.00±0.43 b 159±9 a 1.6±0.2 a 162±12 a ck 5.03±0.10 a 29.07±1.59 b 2.38±0.14 b 0.29±0.02 b 22.21±0.99 a 82±4 b 1.7±0.1 a 97±12 b 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) -
由表3可知:整体来看,除土壤酸性磷酸酶外,毛竹林皆伐后UR、CR处理的土壤脲酶、β-葡萄糖苷酶和过氧化物酶活性高于ck处理;UR处理土壤的4种胞外酶活性均高于CR处理,幅度为46%~98%。在0~10 cm土壤中,UR处理的脲酶、酸性磷酸酶和β-葡萄糖苷酶活性均显著高于CR和ck处理(P<0.05),3种处理的过氧化物酶活性无显著差异;ck处理土壤的酸性磷酸酶活性比CR处理高47%。在10~20 cm土壤中,UR处理的脲酶、酸性磷酸酶和β-葡萄糖苷酶活性均显著高于CR和ck处理(P<0.05),3种处理的过氧化物酶活性无显著差异。
表 3 不同处理的土壤胞外酶活性
Table 3. Soil extracellar enzyme activity of different treatments
土层/cm 处理 脲酶/
(μmol·g−1·h−1)酸性磷酸酶/
(μmol·g−1·h−1)β-葡萄糖苷酶/
(μmol·g−1·h−1)过氧化物酶/
(μmol·g−1·h−1)土层/cm 处理 脲酶/
(μmol·g−1·h−1)酸性磷酸酶/
(μmol·g−1·h−1)β-葡萄糖苷酶/
(μmol·g−1·h−1)过氧化物酶/
(μmol·g−1·h−1)0~10 CR 424±40 b 476±52 b 41.1±4.9 b 768±75 a 10~20 CR 338±44 b 508±59 b 37.7±4.3 b 766±132 a UR 836±101 a 944±90 a 77.0±11.6 a 1 123±152 a UR 542±75 a 884±87 a 71.9±8.0 a 1 039±184 a ck 290±71 b 701±76 b 44.0±8.0 b 770±147 a ck 243±40 b 569±66 b 37.3±7.1 b 723±104 a 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) -
通过表层土壤34个指标的主成分分析,提取7个主成分,累积贡献率为83.82%;第1主成分特征值为14.100,贡献率41.5%,主要影响因子为0~10 cm 全氮(xTNⅠ)、10~20 cm全氮(xTNⅡ)、0~10 cm 有机质(xSOCⅠ)、10~20 cm有机质(xSOCⅡ)、0~10 cm碱解氮(xANⅠ)、10~20 cm碱解氮(xANⅡ)等6个指标;第2主成分特征值为4.646,贡献率为13.7%,主要影响因子为0~10 cm孔隙度(xPⅠ)、10~20 cm孔隙度(xPⅡ)和10~20 cm饱和持水量(xShcⅡ)等3个指标;第3主成分特征值为3.100,贡献率为9.1%,主要影响因子为0~10 cm速效钾(xAKⅠ)和10~20 cm速效钾(xAKⅡ);第4主成分特征值为2.500,贡献率为7.3%,主要影响因子为0~10 cm有效磷(xAPⅠ)、10~20 cm有效磷(xAPⅡ)和10~20 cm β-葡萄糖苷酶活性(xBDⅡ);第5主成分特征值为1.610,贡献率为4.735%,主要影响因子为0~10 cm孔隙度(xPⅠ)和10~20 cm过氧化物酶活性(xPERⅡ);第6主成分特征值为1.300,贡献率为3.8%,主要影响因子为10~20 cm β-葡萄糖苷酶活性(xBDⅡ);第7主成分特征值为1.300,贡献率为3.7%,主要影响因子为10~20 cm酸性磷酸酶活性(xACPⅡ)。各主成分影响因子经相关分析后最终选取7个评价指标,分别为xTNⅠ、xPⅡ、xAKⅠ、xAPⅠ、xPERⅡ、xBGⅡ、xACPⅡ。
根据选定指标的离差标准化值和指标权重(表4)构建土壤性质综合评价模型:
表 4 综合评价指标及其权重
Table 4. Comprehensive evaluation indices and weights
指标 xTNⅠ xPⅡ xAKⅠ xAPⅠ xPERⅡ xBGⅡ xACPⅡ 指标权重 0.20 0.15 0.18 0.17 0.12 0.17 0.18 公因子方差 0.951 0.772 0.880 0.830 0.598 0.857 0.888 S=0.20F(xTNⅠ)+0.15F(xPⅡ)+0.18F(xAKⅠ)+0.17F(xAPⅠ)+0.12F(xPERⅡ)+0.17F(xBGⅡ)+0.18F (xACPⅡ)。
从0~10、10~20 cm等2层土壤综合评分结果来看(图1),毛竹林皆伐后恢复迹地得分均高于毛竹林得分,且UR处理得分高于CR处理。CR、UR、ck处理综合得分分别为0.41、0.61、0.37,UR处理综合得分分别比CR和ck处理高49%和 65%。UR处理的0~10 cm全氮得分为0.11,高于CR处理(0.05)和ck处理(0.04);CR处理和UR处理的0~10 cm速效钾得分均为0.10,高于ck处理(0.04);UR处理的10~20 cm β-葡萄糖苷酶得分为0.08,高于CR和ck处理(0.04);UR处理的10~20 cm酸性磷酸酶得分为0.10,高于CR (0.05)和ck处理(0.06)。
Effects of clear-cutting and harvest residue of Phyllostachys edulis forests on soil quality
-
摘要:
目的 毛竹Phyllostachys edulis林生态修复是当前中国亚热带地区面临的一个难题。了解毛竹林皆伐和剩余物保留后迹地土壤的自然恢复状况可为毛竹林生态修复提供指导。 方法 在毛竹林皆伐迹地设置了保留采伐剩余物(UR)、清理采伐剩余物(CR)和未采伐毛竹林地作为对照(ck)等3个处理。5 a后,通过土壤调查与测定,分析比较不同处理土壤指标变化,运用模糊判别和主成分分析,定量评价毛竹林皆伐后土壤自然恢复效果。 结果 ①CR、UR处理土壤容重分别比ck降低31%和14% (P<0.05),土壤总孔隙度、毛管持水量、田间持水量和饱和持水量均高于ck;UR处理土壤的持水力整体优于CR处理。②CR、UR处理土壤有机碳、全氮、全磷、碱解氮和速效钾质量分数均高于ck,各指标增加幅度为117%~123%;有效磷则表现为CR处理极显著(P<0.01)低于UR和ck;由于保留了毛竹林皆伐后采伐剩余物,UR处理土壤有机碳、全氮、全磷、碱解氮、有效磷显著高于CR处理33%~99% (P<0.05);③CR、UR处理土壤脲酶、β-葡萄糖苷酶和过氧化物酶活性高于ck;UR处理土壤3种胞外酶活性均高于CR处理46%~98%。④综合评价结果表明:土壤质量得到较好恢复,毛竹林皆伐后恢复迹地土壤综合得分从高到低依次为采伐剩余物保留样区、采伐剩余物清理样区、毛竹林样区。 结论 毛竹林皆伐后的土壤经过5 a自然恢复,与毛竹林林地土壤相比得到较快修复,毛竹林皆伐后保留采伐剩余物更有利于土壤修复。图1表4参23 Abstract:Objective Ecological restoration of Phyllostachys edulis forest is a challenge in subtropical regions of China. This study aims to understand the natural restoration status of the soil after clear-cutting and residue retention of Ph. edulis forest, so as to provide guidance for ecological restoration of forest. Method In the clear-cutting sites, 3 treatments were set up, i.e. cutting residue reserved (UR), cutting residue removed (CR), and uncut Ph. edulis forest as the control (ck). The changes of soil indexes under different treatments were analyzed and compared through soil survey and measurement 5 years later, and fuzzy mathematical discrimination and principal component analysis were used to quantitatively evaluate the natural restoration effect of Ph. edulis forest after clear-cutting. Result (1) The soil bulk density of CR and UR decreased by 31% and 14% respectively compared with ck (P<0.05). Soil total porosity, capillary water holding capacity, field water holding capacity and saturated water holding capacity were higher than those of ck. The water holding capacity of UR soil was better than that of CR. (2) The contents of soil organic carbon, total nitrogen, total phosphorus, alkali-hydrolyzed nitrogen and available potassium in CR and UR were higher than those in ck, and each index increased by 17%−123%. Available phosphorus showed that CR was significantly lower than UR and ck (P<0.01). Due to the retention of cutting residues of Ph. edulis forest after clear-cutting, the soil organic carbon, total nitrogen, total phosphorus, alkali-hydrolyzed nitrogen and available phosphorus in UR were significantly higher than those in CR treatment by 33%−99% (P<0.05). (3) The activities of urease, β-glucosidase and peroxidase in CR, UR soil were higher than those in ck. The activities of 3 extracellular enzymes in UR soil were 46%−98% higher than those in CR treatment. (4) The comprehensive evaluation results showed that the soil quality had been well restored, and the comprehensive scores ranging from high to low in the restored site soil of Ph. edulis forest after clear-cutting was sample area with cutting residue reserved, sample area with cutting residue removed, Ph. edulis forest sample area. Conclusion After 5 years of natural recovery, the soil of Ph. edulis forest after clear-cutting can be restored faster than that in Ph. edulis forest land, and the retention of the cutting residues after clear-cutting of Ph. edulis forest is more conducive to soil restoration. [Ch, 1 fig. 4 tab. 23 ref.] -
表 1 不同处理的土壤物理性质
Table 1. Soil physical properties of different treatments
土层/cm 处理 容重/(g·cm−3) 总孔隙度/% 毛管持水量/(g·kg−1) 田间持水量/(g·kg−1) 饱和持水量/(g·kg−1) 0~10 CR 0.67±0.02 b 58.1±2.3 a 470±17 a 434±18 a 654±24 a UR 0.77±0.06 b 52.2±1.9 a 519±40 a 464±35 a 670±51 a ck 0.88±0.04 a 52.2±1.3 a 443±20 a 406±18 a 605±29 a 10~20 CR 0.67±0.02 b 61.4±1.7 a 487±15 b 447±14 b 682±24 b UR 0.68±0.05 b 58.3±1.8 a 596±47 a 527±39 a 767±59 a ck 0.93±0.03 a 54.0±1.3 a 439±22 b 394±19 b 610±28 b 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) 表 2 不同处理的土壤化学性质
Table 2. Soil chemical properties of different treatments
土层/cm 处理 pH 有机碳/
(g·kg−1)全氮/
(g·kg−1)全磷/
(g·kg−1)全钾/
(g·kg−1)碱解氮/
(mg·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)0~10 CR 5.09±0.06 a 36.86±2.62 b 3.27±0.24 b 0.37±0.02 b 25.29±1.61 a 101±7 b 1.4±0.1 b 189±13 a UR 4.73±0.06 b 73.25±7.25 a 6.30±0.54 a 0.58±0.04 a 16.58±0.43 b 96±11 a 1.9±0.1 a 195±15 a ck 5.03±0.09 a 33.73±2.78 b 2.82±0.23 b 0.31±0.01 b 22.67±1.10 a 95±5 b 2.1±0.1 a 105±13 b 10~20 CR 5.26±0.08 a 31.11±2.43 b 2.71±0.21 b 0.34±0.02 b 26.31±1.78 a 95±9 b 1.1±0.1 b 169±11 a UR 4.98±0.09 a 53.68±6.03 a 4.62±0.47 a 0.55±0.05 a 17.00±0.43 b 159±9 a 1.6±0.2 a 162±12 a ck 5.03±0.10 a 29.07±1.59 b 2.38±0.14 b 0.29±0.02 b 22.21±0.99 a 82±4 b 1.7±0.1 a 97±12 b 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) 表 3 不同处理的土壤胞外酶活性
Table 3. Soil extracellar enzyme activity of different treatments
土层/cm 处理 脲酶/
(μmol·g−1·h−1)酸性磷酸酶/
(μmol·g−1·h−1)β-葡萄糖苷酶/
(μmol·g−1·h−1)过氧化物酶/
(μmol·g−1·h−1)土层/cm 处理 脲酶/
(μmol·g−1·h−1)酸性磷酸酶/
(μmol·g−1·h−1)β-葡萄糖苷酶/
(μmol·g−1·h−1)过氧化物酶/
(μmol·g−1·h−1)0~10 CR 424±40 b 476±52 b 41.1±4.9 b 768±75 a 10~20 CR 338±44 b 508±59 b 37.7±4.3 b 766±132 a UR 836±101 a 944±90 a 77.0±11.6 a 1 123±152 a UR 542±75 a 884±87 a 71.9±8.0 a 1 039±184 a ck 290±71 b 701±76 b 44.0±8.0 b 770±147 a ck 243±40 b 569±66 b 37.3±7.1 b 723±104 a 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) 表 4 综合评价指标及其权重
Table 4. Comprehensive evaluation indices and weights
指标 xTNⅠ xPⅡ xAKⅠ xAPⅠ xPERⅡ xBGⅡ xACPⅡ 指标权重 0.20 0.15 0.18 0.17 0.12 0.17 0.18 公因子方差 0.951 0.772 0.880 0.830 0.598 0.857 0.888 -
[1] NAGATI M, ROY M, MANZI S, et al. Impact of local forest composition on soil fungal communities in a mixed boreal forest [J]. Plant Soil, 2018, 432(1/2): 345 − 357. [2] CRAWFORD K M, BAUER J T, COMITA S, et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis [J]. Ecol Lett, 2019, 22(8): 1274 − 1284. [3] QIAO Leilei, LI Yuanze, SONG Yahui, et al. Effects of vegetation restoration on the distribution of nutrients, glomalin-related soil protein, and enzyme activity in soil aggregates on the loess plateau, China[J/OL]. Forests, 2019, 10(9): 796[2021-12-10]. doi: 10.3390/10090796. [4] 蓝斌, 何东进. 闽北毛竹林生态系统能量分配规律的研究[J]. 应用生态学报, 2000, 11(2): 193 − 195. LAN Bin, HE Dongjin. Energy distribution of Phyllostachys pubescens ecosytem in north Fujian [J]. Chin J Appl Ecol, 2000, 11(2): 193 − 195. [5] OKUTOMI K, SHINODA S, FUKUDA H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan [J]. J Veg Sci, 1996, 7(5): 723 − 728. [6] ISAGI Y, TORII A. Range Expansion and its mechanisms in a naturalized bamboo species, Phyllostachys pubescens, in Japan [J]. J Sustainable For, 1997, 6(1/2): 127 − 141. [7] 丁丽霞, 王祖良, 周国模, 等. 天目山国家级自然保护区毛竹林扩张遥感监测[J]. 浙江林学院学报, 2006, 23(3): 297 − 300. DING Lixia, WANG Zuliang, ZHOU Guomo, et al. Monitoring Phyllostachys pubescens stands expansion in National Nature Reserve of Mount Tianmu by remote sensing [J]. J Zhejiang For Coll, 2006, 23(3): 297 − 300. [8] OSEI R, ANSONG M, ZERBE S. Comparison of socio-economic and ecological benefits of bamboo and trees: the perspectives of local communities in south-western Ghana [J]. Southern For J For Sci, 2019, 81(3): 255 − 260. [9] 白尚斌, 周国模, 王懿祥, 等. 天目山国家级自然保护区毛竹扩散过程的林分结构变化研究[J]. 西部林业科学, 2012, 41(1): 77 − 82. BAI Shangbin, ZHOU Guomo, WANG Yixiang, et al. Stand structure change of Phyllostachys pubescens forest expansion in Tianmushan National Nature Reserve [J]. J West China For Sci, 2012, 41(1): 77 − 82. [10] 王铮屹, 戴其林, 柏宬, 等. 天目山皆伐毛竹林自然更新群落类型与多样性分析[J]. 浙江农林大学学报, 2020, 37(4): 710 − 719. WANG Zhengyi, DAI Qilin, BAI Cheng, et al. Types and diversity of natural regeneration community after clear cutting of Phyllostachys edulis forests in Mount Tianmu, China [J]. J Zhejiang A&F Univ, 2020, 37(4): 710 − 719. [11] 陈旭, 刘宗悦, 徐钧杰, 等. 天目山毛竹林皆伐后群落的恢复特征[J]. 浙江农林大学学报, 2022, 39(4): 705 − 716. CHEN Xu, LIU Zongyue, XU Junjie, et al. Restoration characteristics of Phyllostachys edulis community after clear-cutting in Mount Tianmu [J]. J Zhejiang A&F Univ, 2022, 39(4): 705 − 716. [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. The Analysis Method of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. [13] GERMAN D P, WEINTRAUB M N, GRANDY A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies [J]. Soil Biol Biochem, 2011, 43(7): 1387 − 97. [14] FUJII K, SHIBATA M, KITAJIMA K, et al. Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems [J]. Curr Top Ecol, 2018, 33(1): 149 − 160. [15] 池鑫晨, 宋超, 朱向涛, 等. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响[J]. 生态学杂志, 2020, 39(7): 2263 − 2272. CHI Xinchen, SONG Chao, ZHU Xiangtao, et al. Effects of moso bamboo invasion on soil active organic carbon and nitrogen in a evergreen broad-leaved forest in subtropical China [J]. Chin J Ecol, 2020, 39(7): 2263 − 2272. [16] 白尚斌, 周国模, 王懿祥, 等. 天目山保护区森林群落植物多样性对毛竹入侵的响应及动态变化[J]. 生物多样性, 2013, 21(3): 288 − 295. BAI Shangbin, ZHOU Guomo, WANG Yixiang, et al. Plant species diversity and dynamics in forests invaded by moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve [J]. Biodiversity Sci, 2013, 21(3): 288 − 295. [17] EISENBIES M H, VANCE E D, AUST W M, et al. Intensive utilization of harvest residues in southern pine plantations: quantities available and implications for nutrient budgets and sustainable site productivity [J]. Bioenergy Res, 2009, 2(3): 90 − 98. [18] 吴传敬, 郭剑芬, 许恩兰, 等. 采伐残余物不同处理方式对杉木幼林土壤有机碳组分和相关酶活性的影响[J]. 土壤学报, 2019, 56(6): 1504 − 1513. WU Chuanjin, GUO Jianfeng, XU Enlan, et al. Effects of logging residue on composition of soil carbon and activity of related enzymes in soil of a young Chinese fir plantation as affected by residue handling mode [J]. Acta Pedol Sin, 2019, 56(6): 1504 − 1513. [19] 黄启堂, 陈爱玲, 贺军. 不同毛竹林林地土壤理化性质特征比较[J]. 福建林学院报, 2006, 26(4): 299 − 302. HUANG Qitang, CHEN Ailing, HE Jun. Comparison of soil physical and chemical properties among various Phyllostachys pubescens plantation [J]. J Fujian Coll For, 2006, 26(4): 299 − 302. [20] ZHAO Yingzhi, LIANG Chenfei, SHAO Shuai, et al. Linkages of litter and soil C∶N∶P stoichiometry with soil microbial resource limitation and community structure in a subtropical broadleaf forest invaded by moso bamboo [J]. Plant Soil, 2021, 465(1/2): 473 − 490. [21] 吴家森, 姜培坤, 王祖良. 天目山国家级自然保护区毛竹扩张对林地土壤肥力的影响[J]. 江西农业大学学报, 2008, 30(4): 689 − 692. WU Jiasen, JIANG Peikun, WANG Zuliang. The effects of Phyllostachys pubescens expansionon onsoil fertility in National Nature Reserve of Mount Tianmu [J]. Acta Agric Univ Jiangxi, 2008, 30(4): 689 − 692. [22] GRANDY A S, STRICKLAND M S, LAUBER C L, et al. The influence of microbial communities, management, and soil texture on soil organic matter chemistry [J]. Geoderma, 2009, 150(3/4): 278 − 286. [23] CHODAK M, NIKLIŃSKA M. The effect of different tree species on the chemical and microbial properties of reclaimed mine soils [J]. Biol Fert Soil, 2010, 46(6): 555 − 566. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220122