-
森林土壤的物理、化学及生物学性质综合表现为土壤肥力。土壤肥力的高低影响着森林植物的分布、生长以及群落的组成、结构和生产力,植物又通过凋落物、根系分泌物等反作用于土壤,改变着土壤的物理、化学及生物学性质,由此形成一个动态的相互作用机制,提升森林生态系统结构与功能[1-3]
毛竹Phyllostachys edulis属于禾本科Gramineae刚竹属Phyllostachys植物,原产于中国亚热带地区,以地下竹鞭进行无性繁殖,具有扩展蔓延速度快和竞争力强的特点。从20世纪90年代开始,毛竹因其具有良好的竹材、竹芛等多种用途而作为笋材两用的经济树种在中国亚热带地区大面积种植,为山区农民脱贫致富做出贡献[4]。随着中国经济的发展,毛竹林经营成本不断提高,而竹材价格反而降低,因此,很多竹农已经放弃了对毛竹林的经营管理,导致失去管理的毛竹林无序扩张蔓延。近年来,这种趋势不断加剧。在许多地方由于毛竹地下竹鞭扩张渗透到阔叶林等相邻森林中,迅速成林并侵占其他物种的生境,形成毛竹单优势群落,导致植物种类减少,群落层次结构简化,生物多样性显著降低,土壤物理性质、化学性质和土壤微生物发生显著变化,整个区域生态系统退化[5-9],威胁到生物多样性保护和区域生态安全。因此,控制毛竹林无序蔓延扩张,开展毛竹林皆伐后生态恢复效果研究,已受到全社会广泛关注。2015年,为控制和减少毛竹入侵对天目山国家级自然保护区生态破坏,经审批,对该区域部分入侵毛竹林进行皆伐。本研究在毛竹林皆伐区和未伐区设置样地进行比较研究,探讨毛竹林皆伐后土壤自然恢复效果,为天目山毛竹林入侵区域生态修复提供技术支持,为亚热带毛竹林入侵区生态修复提供借鉴。
-
研究区位于浙江省杭州市临安区天目山国家级自然保护区,地处中亚热带北缘,浙皖两省交界处,是南北植物汇流之区,也是中国最主要的野生植物类型自然保护区之一,面积为4 300 hm2,海拔300~1 556 m。研究区土壤类型随着海拔变化具有较大差异,600 m以下为红壤,600~850 m主要为黄红壤,850~1 200 m为黄壤,1 200 m以上为黄棕壤。植被分布也有着明显的垂直带谱特征:在海拔230~850 m分布常绿阔叶林,850~1 100 m分布常绿落叶阔叶混交林,1 100~1 350 m分布落叶阔叶林,1 400 m以上为落叶矮林。
在天目山国家级自然保护区,毛竹林作为一种特殊的森林类型,主要分布在海拔350~900 m。由于保护区不允许开展森林经营活动,毛竹林完全处于自然状态,立竹度高,并不断向周边蔓延扩张,面积从55 hm2蔓延扩张到105 hm2,对保护区原有植被蚕食的现象日益严重。为控制和减少毛竹入侵对天目山国家级自然保护区的生态破坏,促进生物多样性保护。2015年经上级批准,对部分入侵毛竹林进行皆伐作业,并于皆伐后连续3 a进行人工除笋,防止毛竹复占。毛竹林皆伐后经过5 a自然恢复,物种组成有了明显的变化,且物种种类明显增加,与未皆伐毛竹林相比植物多样性有显著增加[10-11]。
-
于2017年在毛竹林皆伐区域设置了清除(CR)和保留(UR)采伐剩余物样地各3个,在未伐区毛竹林内设置对照样地(ck) 3个。样地面积20 m×20 m,在每个样地四角和中间分别设置1个5 m×5 m样方。
在2020年11月样地复查的同时采集土壤样品,每个样地内采用5点取样法,均匀采取0~10、10~20 cm土层中3个点位土壤的混合样品,并过2 mm筛,去除样品中的植物碎屑及石块,经过研磨过筛处理后测定土壤化学性质;使用200 cm3环刀于样方中心采集0~10、10~20 cm土层土壤用于测定土壤物理性质;新鲜土壤样品保存在4 ℃环境中用于测定土壤胞外酶活性。
-
土壤理化性质参考《土壤农业化学分析方法》进行测定[12]。土壤容重、孔隙度、最大持水量、最小持水量、毛管持水量及含水量采用环刀法测定。土壤pH采用pH计测定(水土质量比为2.5∶1.0);土壤有机质采用高温外热重铬酸钾氧化-容量法测定;全氮用凯氏定氮法测定;全磷采用氢氧化钠熔融法-钼锑抗比色测定;全钾采用氢氧化钠熔融法测定;碱解氮采用碱解扩散法测定;有效磷采用盐酸-氟化铵浸提,钼锑抗比色法测定;速效钾采用火焰光度计测定。土壤胞外酶活性参考GERMAN等[13]使用鲜土进行测定,脲酶采用比色法测定,水解酶活性使用甲基伞形酮(4-MUB)作为底物标示,氧化酶活性使用L-二羟苯丙氨酸(L-DOPA)作为底物标示。利用微孔板荧光法、使用多功能酶标仪测定单位时间内特定底物被各种酶催化释放出的荧光产物的量来计算酶活性。
-
采用 Excel 2019 进行数据整理;用 SPSS 26.0 进行统计分析。对毛竹林样地和砍伐后自然恢复迹地土壤物理、化学性质及胞外酶活性差异做单因素方差分析(one-way ANOVA),显著性水平设置为0.05,并采用Tukey 方法进行显著性检验。统计结果用Origin 2018制图。
-
综合考虑土壤物理性质、化学性质及胞外酶活性,本研究选取了34 个候选指标,分别是:0~10、10~20 cm土层土壤容重、孔隙度、毛管持水量、田间持水量、饱和持水量、pH、有机质质量分数、全氮质量分数、全磷质量分数、全钾质量分数、碱解氮质量分数、有效磷质量分数、速效钾质量分数、过氧化物酶活性、脲酶活性、酸性磷酸酶和β-葡萄糖苷酶活性。在运用主成分分析时,首先,根据特征值不小于 1 和累积方差贡献率不小于 80%,提取主成分。然后,在每个主成分中,选出不小于最大载荷值 90%的指标,对其进行 Pearson 相关分析,将相关系数之和最大的指标作为评价指标;若相关系数之和最大的指标不止1个,则选取载荷值较大的指标;若不小于最大载荷值 90%的指标只有1个,则该指标直接作为评价指标。
-
根据主成分分析得到所选取指标的公因子方差,计算各指标的权重(Wi):
$ W_{i}={C_{i}}\bigg{/}{\displaystyle \sum_{i=1}^{n} C_{i}} $ 。其中:n是综合评价的指标个数,Ci是第 i 个指标的公因子方差。 -
基于模糊数学模型,计算土壤性质的综合得分(S) :
$ S=\displaystyle \sum_{i=1}^{n} W_{i} F_{i} $ 。其中:Fi 是指标 i的离差标准化后的值。S越大,表示毛竹林皆伐后自然恢复的土壤综合恢复效果越好,反之则越差。 -
由表1可见:在0~10 cm表层土壤中,ck处理的土壤容重分别比CR、UR处理高31%和 14%;UR处理土壤容重略高于CR处理, 但无显著差异;UR、CR处理的土壤总孔隙度、毛管持水量、田间持水量和饱和持水量均高于ck处理,但无显著差异。在10~20 cm土壤中,ck处理土壤容重分别比CR、UR处理高39%和37%;ck、CR和UR处理的总孔隙度无显著差异;UR处理的毛管持水量、田间持水量和饱和持水量均高于CR和ck处理(P<0.05)。
表 1 不同处理的土壤物理性质
Table 1. Soil physical properties of different treatments
土层/cm 处理 容重/(g·cm−3) 总孔隙度/% 毛管持水量/(g·kg−1) 田间持水量/(g·kg−1) 饱和持水量/(g·kg−1) 0~10 CR 0.67±0.02 b 58.1±2.3 a 470±17 a 434±18 a 654±24 a UR 0.77±0.06 b 52.2±1.9 a 519±40 a 464±35 a 670±51 a ck 0.88±0.04 a 52.2±1.3 a 443±20 a 406±18 a 605±29 a 10~20 CR 0.67±0.02 b 61.4±1.7 a 487±15 b 447±14 b 682±24 b UR 0.68±0.05 b 58.3±1.8 a 596±47 a 527±39 a 767±59 a ck 0.93±0.03 a 54.0±1.3 a 439±22 b 394±19 b 610±28 b 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) -
由表2可见:在0~10 cm土壤中,UR处理的pH显著低于 CR和ck处理(P<0.05),UR处理的有机碳、全氮、全磷和碱解氮质量分数均显著高于CR和ck处理,UR处理的有机碳质量分数比CR和ck处理高99%和117%,全氮高93%和123%,全磷高57%和87%,碱解氮高95%和107%。ck处理的速效钾质量分数显著低于UR和CR(P<0.05)。在10~20 cm土壤中,UR处理的pH略低于CR和ck处理,UR处理的有机碳、全氮、全磷和碱解氮质量分数均显著高于CR和ck处理(P<0.05);UR处理的全钾质量分数显著低于CR和ck处理,ck处理的速效钾质量分数显著低于UR和CR处理 (P<0.05)。
表 2 不同处理的土壤化学性质
Table 2. Soil chemical properties of different treatments
土层/cm 处理 pH 有机碳/
(g·kg−1)全氮/
(g·kg−1)全磷/
(g·kg−1)全钾/
(g·kg−1)碱解氮/
(mg·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)0~10 CR 5.09±0.06 a 36.86±2.62 b 3.27±0.24 b 0.37±0.02 b 25.29±1.61 a 101±7 b 1.4±0.1 b 189±13 a UR 4.73±0.06 b 73.25±7.25 a 6.30±0.54 a 0.58±0.04 a 16.58±0.43 b 96±11 a 1.9±0.1 a 195±15 a ck 5.03±0.09 a 33.73±2.78 b 2.82±0.23 b 0.31±0.01 b 22.67±1.10 a 95±5 b 2.1±0.1 a 105±13 b 10~20 CR 5.26±0.08 a 31.11±2.43 b 2.71±0.21 b 0.34±0.02 b 26.31±1.78 a 95±9 b 1.1±0.1 b 169±11 a UR 4.98±0.09 a 53.68±6.03 a 4.62±0.47 a 0.55±0.05 a 17.00±0.43 b 159±9 a 1.6±0.2 a 162±12 a ck 5.03±0.10 a 29.07±1.59 b 2.38±0.14 b 0.29±0.02 b 22.21±0.99 a 82±4 b 1.7±0.1 a 97±12 b 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) -
由表3可知:整体来看,除土壤酸性磷酸酶外,毛竹林皆伐后UR、CR处理的土壤脲酶、β-葡萄糖苷酶和过氧化物酶活性高于ck处理;UR处理土壤的4种胞外酶活性均高于CR处理,幅度为46%~98%。在0~10 cm土壤中,UR处理的脲酶、酸性磷酸酶和β-葡萄糖苷酶活性均显著高于CR和ck处理(P<0.05),3种处理的过氧化物酶活性无显著差异;ck处理土壤的酸性磷酸酶活性比CR处理高47%。在10~20 cm土壤中,UR处理的脲酶、酸性磷酸酶和β-葡萄糖苷酶活性均显著高于CR和ck处理(P<0.05),3种处理的过氧化物酶活性无显著差异。
表 3 不同处理的土壤胞外酶活性
Table 3. Soil extracellar enzyme activity of different treatments
土层/cm 处理 脲酶/
(μmol·g−1·h−1)酸性磷酸酶/
(μmol·g−1·h−1)β-葡萄糖苷酶/
(μmol·g−1·h−1)过氧化物酶/
(μmol·g−1·h−1)土层/cm 处理 脲酶/
(μmol·g−1·h−1)酸性磷酸酶/
(μmol·g−1·h−1)β-葡萄糖苷酶/
(μmol·g−1·h−1)过氧化物酶/
(μmol·g−1·h−1)0~10 CR 424±40 b 476±52 b 41.1±4.9 b 768±75 a 10~20 CR 338±44 b 508±59 b 37.7±4.3 b 766±132 a UR 836±101 a 944±90 a 77.0±11.6 a 1 123±152 a UR 542±75 a 884±87 a 71.9±8.0 a 1 039±184 a ck 290±71 b 701±76 b 44.0±8.0 b 770±147 a ck 243±40 b 569±66 b 37.3±7.1 b 723±104 a 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) -
通过表层土壤34个指标的主成分分析,提取7个主成分,累积贡献率为83.82%;第1主成分特征值为14.100,贡献率41.5%,主要影响因子为0~10 cm 全氮(xTNⅠ)、10~20 cm全氮(xTNⅡ)、0~10 cm 有机质(xSOCⅠ)、10~20 cm有机质(xSOCⅡ)、0~10 cm碱解氮(xANⅠ)、10~20 cm碱解氮(xANⅡ)等6个指标;第2主成分特征值为4.646,贡献率为13.7%,主要影响因子为0~10 cm孔隙度(xPⅠ)、10~20 cm孔隙度(xPⅡ)和10~20 cm饱和持水量(xShcⅡ)等3个指标;第3主成分特征值为3.100,贡献率为9.1%,主要影响因子为0~10 cm速效钾(xAKⅠ)和10~20 cm速效钾(xAKⅡ);第4主成分特征值为2.500,贡献率为7.3%,主要影响因子为0~10 cm有效磷(xAPⅠ)、10~20 cm有效磷(xAPⅡ)和10~20 cm β-葡萄糖苷酶活性(xBDⅡ);第5主成分特征值为1.610,贡献率为4.735%,主要影响因子为0~10 cm孔隙度(xPⅠ)和10~20 cm过氧化物酶活性(xPERⅡ);第6主成分特征值为1.300,贡献率为3.8%,主要影响因子为10~20 cm β-葡萄糖苷酶活性(xBDⅡ);第7主成分特征值为1.300,贡献率为3.7%,主要影响因子为10~20 cm酸性磷酸酶活性(xACPⅡ)。各主成分影响因子经相关分析后最终选取7个评价指标,分别为xTNⅠ、xPⅡ、xAKⅠ、xAPⅠ、xPERⅡ、xBGⅡ、xACPⅡ。
根据选定指标的离差标准化值和指标权重(表4)构建土壤性质综合评价模型:
表 4 综合评价指标及其权重
Table 4. Comprehensive evaluation indices and weights
指标 xTNⅠ xPⅡ xAKⅠ xAPⅠ xPERⅡ xBGⅡ xACPⅡ 指标权重 0.20 0.15 0.18 0.17 0.12 0.17 0.18 公因子方差 0.951 0.772 0.880 0.830 0.598 0.857 0.888 S=0.20F(xTNⅠ)+0.15F(xPⅡ)+0.18F(xAKⅠ)+0.17F(xAPⅠ)+0.12F(xPERⅡ)+0.17F(xBGⅡ)+0.18F (xACPⅡ)。
从0~10、10~20 cm等2层土壤综合评分结果来看(图1),毛竹林皆伐后恢复迹地得分均高于毛竹林得分,且UR处理得分高于CR处理。CR、UR、ck处理综合得分分别为0.41、0.61、0.37,UR处理综合得分分别比CR和ck处理高49%和 65%。UR处理的0~10 cm全氮得分为0.11,高于CR处理(0.05)和ck处理(0.04);CR处理和UR处理的0~10 cm速效钾得分均为0.10,高于ck处理(0.04);UR处理的10~20 cm β-葡萄糖苷酶得分为0.08,高于CR和ck处理(0.04);UR处理的10~20 cm酸性磷酸酶得分为0.10,高于CR (0.05)和ck处理(0.06)。
-
自然条件下植物和土壤有着最直接的关联,具有密切的相互反馈作用,植物群落的变化会影响其生长环境中的土壤,最终改变土壤结构和土壤养分的有效性[14]。毛竹的入侵性极强,可通过其独特的竞争策略影响入侵林分其他物种的生长,改变入侵地的群落结构[11],导致植物物种多样性明显下降直至形成毛竹纯林,相应的土壤也会发生变化[15]。本研究结果表明:毛竹林皆伐后经5 a自然恢复,林地土壤与ck相比,土壤容重极显著降低,孔隙度和持水能力增加,土壤有机碳、全氮、全磷、碱解氮和速效钾质量分数提高,土壤胞外酶活性增强。主要原因是毛竹林皆伐后大量物种进入,植物多样性明显提高。这一结果与毛竹入侵相邻森林引起的植物多样性下降[16]、土壤退化是相反的,因此,通过毛竹林皆伐控制其快速扩张,可作为目前毛竹扩张蔓延区域的生态修复措施。
-
毛竹林采伐后会产生大量的采伐剩余物,处理方式不同会对迹地更新方式和生态修复产生影响。保留采伐剩余物覆盖在地表,腐烂分解后可增加土壤有机质和养分,减少土壤侵蚀,但会对植物种子萌发、幼苗生长和植被恢复产生一定的影响[17-18]。本研究表明:在0~10和10~20 cm土层土壤中,采伐剩余物保留样区的土壤有机碳、全氮、全磷、碱解氮及速效钾质量分数均显著高于采伐剩余物清理样区。这与池鑫晨等[15]、黄启堂等[19]、ZHAO等[20]、吴家森等[21]的研究结果一致,且采伐剩余物保留样区的脲酶、酸性磷酸酶、β-葡萄糖苷酶活性显著高于采伐剩余物清理样区。有研究表明:土壤酶活性与土壤有机质含量密切相关[22],土壤有机质含量高可以维持较高的土壤胞外酶活性[23],保留采伐剩余物后提高了土壤中的有机质。因此,建议在利用毛竹林皆伐手段进行区域生态修复时,应尽量保留采伐剩余物,但应让其分散均匀,不宜局部过厚堆积,减少对植被恢复影响。
-
毛竹林皆伐后自然恢复迹地土壤恢复良好,保留采伐剩余物的管理方式相较于清除采伐剩余物的管理方式可以更有效地提高土壤有机碳、全氮、全磷、碱解氮和速效钾质量分数,以及土壤胞外酶活性。在未来人工毛竹林弃管后实施生态修复时,保留采伐剩余物可以节省更多人力及资金成本,同时也可以达成更好的土壤恢复效果。
Effects of clear-cutting and harvest residue of Phyllostachys edulis forests on soil quality
-
摘要:
目的 毛竹Phyllostachys edulis林生态修复是当前中国亚热带地区面临的一个难题。了解毛竹林皆伐和剩余物保留后迹地土壤的自然恢复状况可为毛竹林生态修复提供指导。 方法 在毛竹林皆伐迹地设置了保留采伐剩余物(UR)、清理采伐剩余物(CR)和未采伐毛竹林地作为对照(ck)等3个处理。5 a后,通过土壤调查与测定,分析比较不同处理土壤指标变化,运用模糊判别和主成分分析,定量评价毛竹林皆伐后土壤自然恢复效果。 结果 ①CR、UR处理土壤容重分别比ck降低31%和14% (P<0.05),土壤总孔隙度、毛管持水量、田间持水量和饱和持水量均高于ck;UR处理土壤的持水力整体优于CR处理。②CR、UR处理土壤有机碳、全氮、全磷、碱解氮和速效钾质量分数均高于ck,各指标增加幅度为117%~123%;有效磷则表现为CR处理极显著(P<0.01)低于UR和ck;由于保留了毛竹林皆伐后采伐剩余物,UR处理土壤有机碳、全氮、全磷、碱解氮、有效磷显著高于CR处理33%~99% (P<0.05);③CR、UR处理土壤脲酶、β-葡萄糖苷酶和过氧化物酶活性高于ck;UR处理土壤3种胞外酶活性均高于CR处理46%~98%。④综合评价结果表明:土壤质量得到较好恢复,毛竹林皆伐后恢复迹地土壤综合得分从高到低依次为采伐剩余物保留样区、采伐剩余物清理样区、毛竹林样区。 结论 毛竹林皆伐后的土壤经过5 a自然恢复,与毛竹林林地土壤相比得到较快修复,毛竹林皆伐后保留采伐剩余物更有利于土壤修复。图1表4参23 Abstract:Objective Ecological restoration of Phyllostachys edulis forest is a challenge in subtropical regions of China. This study aims to understand the natural restoration status of the soil after clear-cutting and residue retention of Ph. edulis forest, so as to provide guidance for ecological restoration of forest. Method In the clear-cutting sites, 3 treatments were set up, i.e. cutting residue reserved (UR), cutting residue removed (CR), and uncut Ph. edulis forest as the control (ck). The changes of soil indexes under different treatments were analyzed and compared through soil survey and measurement 5 years later, and fuzzy mathematical discrimination and principal component analysis were used to quantitatively evaluate the natural restoration effect of Ph. edulis forest after clear-cutting. Result (1) The soil bulk density of CR and UR decreased by 31% and 14% respectively compared with ck (P<0.05). Soil total porosity, capillary water holding capacity, field water holding capacity and saturated water holding capacity were higher than those of ck. The water holding capacity of UR soil was better than that of CR. (2) The contents of soil organic carbon, total nitrogen, total phosphorus, alkali-hydrolyzed nitrogen and available potassium in CR and UR were higher than those in ck, and each index increased by 17%−123%. Available phosphorus showed that CR was significantly lower than UR and ck (P<0.01). Due to the retention of cutting residues of Ph. edulis forest after clear-cutting, the soil organic carbon, total nitrogen, total phosphorus, alkali-hydrolyzed nitrogen and available phosphorus in UR were significantly higher than those in CR treatment by 33%−99% (P<0.05). (3) The activities of urease, β-glucosidase and peroxidase in CR, UR soil were higher than those in ck. The activities of 3 extracellular enzymes in UR soil were 46%−98% higher than those in CR treatment. (4) The comprehensive evaluation results showed that the soil quality had been well restored, and the comprehensive scores ranging from high to low in the restored site soil of Ph. edulis forest after clear-cutting was sample area with cutting residue reserved, sample area with cutting residue removed, Ph. edulis forest sample area. Conclusion After 5 years of natural recovery, the soil of Ph. edulis forest after clear-cutting can be restored faster than that in Ph. edulis forest land, and the retention of the cutting residues after clear-cutting of Ph. edulis forest is more conducive to soil restoration. [Ch, 1 fig. 4 tab. 23 ref.] -
铁路、公路等基础设施建设会破坏和占压地表植被,形成大量的裸露坡面,遇到降雨极易发生水土流失,甚至出现滑坡、泥石流等次生地质灾害。裸露坡面常常具有坡度陡、坡体稳定性低、水分条件差和土壤瘠薄等特征,是不利于植被生长的困难立地。客土喷播绿化是裸露坡面恢复植被最快速最有效的方式之一,喷播后灌溉养护对植被生长至关重要[1]。大量调查发现:客土喷播后普遍存在过度灌溉,产生坡面径流,造成水土流失和水资源浪费;同时喷播基质通气不畅也会影响植被生长。可见,确定适合植被生长且能保证灌溉时坡面不产流的客土喷播基质含水量已成为当前亟需解决的问题。目前,关于适宜含水量研究大多集中在林地土壤与林木之间,如夏江宝等[2]对贝壳堤岛旱柳Salix matsudana光合效率的土壤水分临界效应及其阈值进行了分级研究,景雄等[3]对毛竹Phyllostachys edulis实生苗土壤水分有效性及生产力进行了分级研究,张淑勇等[4]对黄刺玫Rosa xanthina叶片光合生理参数的土壤水分阈值响应及其生产力进行了分级研究等,客土喷播基质适宜含水量与植被生长的关系研究则较少。以往的研究大都只关注了植物某一个生长阶段的土壤水分适宜含水量阈值[2, 5-6],缺乏对不同季节植被生长与基质水分关系的研究。鉴于此,本研究以北方地区常用的喷播修复植物黑麦草Lolium perenne作为研究对象,利用种植盆模拟客土喷播绿化,通过控制不同客土喷播基质水分梯度,分析夏、秋季黑麦草光合特性日变化对不同喷播基质水分的响应规律,以叶片净光合速率(Pn)和水分利用效率(EWU)作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,并进行季节间比较,建立夏、秋季黑麦草喷播基质适宜含水量阈值分级,以期为北京至张家口的公路、铁路等冬季奥林匹克运动会交通廊道以及自然条件相近地区的工程创面客土喷播恢复植被灌溉养护提供参考。
1. 研究区概况与方法
1.1 研究区概况
研究区河北省张家口市涿鹿县为北京冬季奥林匹克运动会延庆赛区和张家口崇礼赛区廊道沿线,高速公路G6和G7之间,地理坐标为40°26′20″N,115°17′03″E。涿鹿县属温带半干旱大陆性季风气候,年均气温为9.1 ℃,极端最高气温为39.2 ℃,极端最低气温为−23.9 ℃,年均降水量为367 mm,年均蒸发量为1 600 mm,无霜期为169 d,年平均积温为2 100~3 400 ℃,风向以西北为主,平均风速2~3 m·s−1,土壤为沙壤质褐土。
1.2 试验材料
喷播基质材料为客土(取自河北省涿鹿县苗圃)、木纤维[长1~3 cm,中矿复地生态环境技术研究院(北京)有限公司]、保水剂(3005KCE,美国艾森公司)、黏合剂(A30,美国艾森公司)、稻壳和黑麦草种子(北京布莱特草业有限公司)。喷播基质层和种子层的材料配比见表1。黑麦草播种量为4 g·m−2。
表 1 基质层和种子层的材料配比Table 1 Material ratio of matrix layer and seed layer喷播层次 客土/
%木纤
维/%稻壳/
%复合肥/
(g·m−3)保水剂/
(g·m−3)黏合剂/
(g·m−3)基质层(10 cm) 70 10 20 300 200 150 种子层(3 cm) 67 33 说明:客土、木纤维和稻壳为体积比 1.3 试验设计
利用种植盆试验模拟客土喷播绿化,种植盆上口直径50 cm、盆底直径40 cm、高15 cm,底部打孔便于排水。使用恒睿牌HKP125型客土喷播机。2021年4月26日,根据表1的材料配比将基质层和种子层分上、下2层先后喷播到种植盆内,采用微喷灌雾化喷头对喷播基质灌溉养护,保持喷播基质充分湿润(每次灌溉以喷播基质表面不积水为准),保证种子出苗有充足的水分。
2021年5月26日开始控制喷播基质含水量(为质量含水量,下同),用环刀法测得喷播基质的田间持水量为30.36%,容重为1.12 g·cm−3。喷播基质含水量设置5个水分梯度,分别为30.36%、25.81%、21.25%、16.70%和12.14%,即喷播基质相对含水量(CRW)为100%、85%、70%、55%和40%,每个水分梯度设置3个重复。每天16:00用TDR350土壤水分速测仪(美国Spectrum公司)测定CRW(通过容重换算为质量含水量),每盆测定重复3次取平均值,并根据公式计算耗水量:w设−w测=m耗/m干。其中:w设为设计质量含水量(%);w测为实测质量含水量(%),根据TDR350实测值和容重换算;m耗为每盆黑麦草耗水量(g);m干为每盆喷播基质干质量(g),可由基质体积和容重计算得出。使用微喷灌雾化喷头对喷播基质补充水分,为避免降水影响,试验在透明通风遮雨大棚内进行。
1.4 指标观测
于夏季(2021年8月5日,即控水2个月后)、秋季(2021年10月11日,即控水4个月后)选择连续3 d晴朗无云的天气,使用Li-6400XT便携式光合作用测定仪(标准叶室,Li-COR)测定黑麦草叶片Pn (μmol·m−2·s−1)、蒸腾速率Tr (mmol·m−2·s−1)、气孔导度Gs (mol·m−2·s−1)、胞间二氧化碳(CO2)摩尔浓度Ci (μmol·mol−1)等生理参数以及大气CO2摩尔浓度Ca (μmol·mol−1)、光合有效辐射PAR (μmol·m−2·s−1)、气温Ta (℃)和相对湿度Rh (%)等环境因子,并根据公式EWU=Pn/Tr计算水分利用效率、Ls=1−Ci/Ca计算气孔限制值。测定时间为8:00—16:00,隔2 h测1次,每个种植盆选取3株生长健康、长势一致的黑麦草,每株选取3片叶,每片叶记录3次读数,取平均值。
1.5 数据处理
运用Excel 2016整理光合参数与基质相对含水量数据;SPSS 22.0进行差异显著性检验LSD;Origin 2018进行作图和多项式拟合建立回归模型,使用F检验对回归模型进行显著性检验。
2. 结果与分析
2.1 夏秋两季主要环境因子的日变化
由图1可知:夏、秋季PAR的日变化为单峰曲线,均为先升高后下降,峰值均出现在12:00,夏季峰值为(1 393.71±110.04) μmol·m−2·s−1,秋季为(786.73±88.74) μmol·m−2·s−1。夏季PAR日均值(999.75±459.61) μmol·m−2·s−1大于秋季(504.07±274.09) μmol·m−2·s−1。夏、秋季Ca日变化为“V”型曲线,8:00—12:00下降,之后上升。秋季Ca日均值(421.15±17.65) μmol·mol−1大于夏季(411.54 ±10.76) μmol·mol−1,两者相差较小,仅为2.30%。
由图2可知:夏、秋季Ta的日变化与PAR相似,也为单峰曲线,在12:00达最大值。夏季Ta最大为(42.88±1.46) ℃,秋季为(28.41±1.06) ℃。夏季日均值(37.87±3.23) ℃大于秋季(26.21±2.03) ℃。夏、秋季Rh的日变化与Ta相反,12:00前下降,之后上升,夏、秋季Rh最低值分别为20.98%±1.65%和17.05%±1.47%。夏季Rh日均值(26.72%±5.56%)大于秋季(19.98%±2.70%)。
2.2 不同喷播基质含水量下黑麦草光合特性的日变化
2.2.1 不同喷播基质含水量下黑麦草叶片净光合速率(Pn)的日变化
夏、秋季黑麦草叶片Pn日变化对CRW有明显的阈值响应(图3)。当CRW为70%~85%时,Pn的变化呈双峰曲线,均出现光合“午休”现象,上午和下午各出现1个峰值,此水分范围内,Pn在全天各时段均最高。当CRW增加至100%时,Pn呈单峰曲线,峰值出现在12:00。当CRW降低到55%和40%时,Pn为单峰曲线,峰值均出现在8:00(但秋季CRW为55%时Pn峰值出现在10:00),Pn在全天各时段均处于较低水平,表明CRW低于55%会严重抑制植物的光合作用。由表2可知:Pn日均值对CRW也有明显的阈值响应。当CRW为85%时,夏季Pn日均值最大,达(11.17±3.08) μmol·m−2·s−1,与其他水分梯度有显著差异(P<0.05)。秋季的Pn日均值在CRW为70%时达最大,为(7.02±1.97) μmol·m−2·s−1,与其他水分梯度也有显著差异(P<0.05)。夏季Pn日均值均大于秋季,CRW为55%~100%时两季差异达到显著(P<0.05)。CRW为40%时,两季Pn日均值均较低,可见当CRW较低时植物光合作用将受到严重影响。综上所述,夏、秋两季维持黑麦草较高Pn的CRW为70%~85%,高于或低于此范围,Pn明显受到抑制。
表 2 夏、秋季不同喷播基质含水量下黑麦草光合生理参数的日均值变化Table 2 Change of daily mean of photosynthetic physiological parameters of L. perenne under different spraying substrate water content in summer and autumnCRW/% Pn/(μmol·m−2·s−1) Tr/(mmol·m−2·s−1) EWU/(mol·mol−1) 夏季 秋季 夏季 秋季 夏季 秋季 100 6.79±2.01 Abc 4.30±0.95 Bb 5.59±1.17 Aab 2.75±0.16 Bab 1.32±0.20 Bbc 1.56±0.26 Acd 85 11.17±3.08 Aa 6.07±1.24 Ba 6.83±1.12 Aa 3.13±0.40 Ba 1.61±0.22 Ba 1.92±0.22 Ab 70 9.26±2.79 Aab 7.02±1.97 Ba 6.76±0.63 Aa 2.92±0.59 Ba 1.43±0.15 Bab 2.37±0.25 Aa 55 5.77±2.09 Ac 3.77±1.03 Bb 4.91±0.93 Ab 2.35±0.30 Bbc 1.20±0.12 Bbc 1.63±0.20 Ac 40 2.80±1.66 Ae 2.74±0.78 Ab 3.03±0.87 Ac 2.16±0.28 Ac 1.01±0.28 Ac 1.28±0.16 Ad 说明:同列不同小写字母、同行不同大写字母均表示差异显著(P<0.05) 2.2.2 不同喷播基质含水量下黑麦草叶片蒸腾速率(Tr)的日变化
夏、秋季黑麦草叶片Tr日变化规律与Pn基本相似(图4),当CRW为70%~85%时,黑麦草Tr的日变化呈双峰曲线。当CRW增加至100%时,Tr呈现单峰曲线,夏、秋季峰值均出现在14:00,但日均值却低于CRW为70%~85%时。表明基质水分充足可有效延缓Tr“午休”,但会降低Tr。当CRW≤55%时,Tr呈单峰曲线,峰值出现在8:00或10:00,全天各时段均处于较低的水平。结合表2可知:当CRW≥55%时,夏季Tr日均值显著高于秋季(P<0.05)),可见不同季节气候环境对植物Tr影响较大。当CRW为40%时,Tr日均值显著低于其他水分梯度(P<0.05),表明水分胁迫严重限制Tr。综上所述,CRW过高或过低均会降低黑麦草Tr,当CRW为70%~85%时,黑麦草会保持较高的Tr,保障植物正常生理活动。
2.2.3 不同喷播基质含水量下黑麦草叶片水分利用效率(EWU)的日变化
EWU日变化对基质含水量有明显的阈值响应(图5)。CRW为70%~85%时,EWU为双峰曲线(但秋季CRW=85%时为单峰曲线),全天各时段EWU均高于其他水分梯度。当CRW增加至100%时,EWU表现为单峰曲线,峰值出现在12:00。CRW为40%~55%时,EWU峰值出现在8:00或10:00,之后不断降低。结合表2可知:当CRW≥55%时,秋季EWU日均值显著高于夏季(P<0.05),CRW为40%时秋季EWU日均值高于夏季,但不差异显著。CRW为40%和100%时,EWU日均值均显著低于其他水分梯度(P<0.05),表明CRW过高或过低都会降低EWU。综上所述,夏、秋季维持黑麦草同时具有较高Pn和EWU的CRW为70%~85%,在这个水分范围内,Tr也保持较高水平,有利于植物的光合作用。
2.2.4 不同喷播基质含水量下黑麦草叶片气孔导度(Gs)、胞间CO2摩尔浓度(Ci)和气孔限制值(Ls)的日变化
夏、秋季黑麦草Gs对CRW具有明显的阈值响应(图6),当CRW为70%~85%时,Gs呈现双峰曲线。当CRW=100%时,Gs为单峰曲线,峰值出现在12:00。当CRW为40%~55%时,全天Gs峰值出现在8:00,之后一直降低,维持在较低水平。Ci和Ls对CRW的阈值响应表现不同的变化规律(图7和图8),上午和下午表现也不同。CRW为70%~100%时,Pn下降,Gs和Ci明显下降,Ls明显升高,表明Pn下降原因是气孔限制。CRW=55%时,上午Pn下降,Gs和Ci明显下降,Ls升高,但下午Pn下降,Gs和Ls下降,Ci反而升高,可见限制黑麦草Pn的原因上午和下午不同,上午以气孔限制为主,气孔关闭导致CO2供应不足,下午以非气孔限制为主,水分胁迫导致植物叶片光合结构受损,Pn下降。当CRW=40%时,Ci从8:00开始上升且一直处于较高水平,而Ls全天都较低,表明水分胁迫严重损坏了植物叶片光合结构,降低了光合作用有关酶的活性,从而降低了Pn。由图9可知:夏、秋季不同CRW范围内Pn和Gs的正比关系不同,当CRW>55%时,随着Gs增大,Pn线性增大,Pn和Gs为线性正比关系;当CRW≤55%时,Pn和Gs为非线性关系。因此,当CRW=55%时,黑麦草不仅发生了Pn限制机制的转变,其Pn和Gs之间的关系也发生转变。综上所述,在CRW=55%时出现上午、下午Ci和Ls变化相反的情况,表明此基质含水量是黑麦草叶片Pn下降由气孔限制为主转变为非气孔限制为主的临界点。
2.3 基于黑麦草光合特性的喷播基质含水量临界值分析
为进一步确定黑麦草喷播基质相对含水量(CRW)分级临界值,对黑麦草Pn、Tr、EWU和Gs的日均值与CRW构建回归模型(表3)。由Pn与CRW的回归模型知:夏、秋季Pn达最大值的CRW分别为78.17%、76.02%,其对应的最大Pn分别为9.68和 6.33 μmol·m−2·s−1。令Pn=0,求出夏、秋季水合补偿点的CRW分别为35.02%、30.83%(CRW大于100%的点均已舍去)。根据回归模型的积分式[2]求出CRW为40%~100%时黑麦草夏季Pn平均值为7.77 μmol·m−2·s−1,对应的CRW分别为58.98%和97.36%。同理可求出黑麦草秋季Pn平均值为5.29 μmol·m−2·s−1,对应的CRW分别为57.71%和94.33%。由此可以确定黑麦草夏、秋季Pn达到中等以上水平的CRW分别为58.98%~97.36%、57.71%~94.33%。
表 3 夏、秋季黑麦草光合参数与喷播基质相对含水量的回归模型Table 3 Regression model between photosynthetic parameters of L. perenne and relative water content of spraying substrate in summer and autumn参数 季节 回归模型 决定系数 F P Pn 夏季 y=−22.092 7+0.813 0x−0.005 2x2 0.88 78.98 9.12×10−11 秋季 y=−11.584 0+0.471 3x−0.003 1x2 0.81 45.60 1.49×10−8 Tr 夏季 y=−9.497 1+0.398 7x−0.002 5x2 0.94 595.83 0.000 秋季 y=−0.574 0+0.083 8x−0.000 5x2 0.83 39.08 5.74×10−8 EWU 夏季 y=−0.844 9+0.061 0x−0.000 4x2 0.80 31.05 3.93×10−7 秋季 y=−2.344 8+0.122 2x−0.000 83x2 0.76 35.29 1.37×10−7 Gs 夏季 y=−0.354 2+0.013 5x−0.000 086x2 0.78 39.97 4.73×10−8 秋季 y=−0.319 7+0.012 2x−0.000 077x2 0.83 53.94 3.30×10−9 说明:y表示各参数,x表示喷播基质相对含水量(CRW) 根据EWU与CRW的回归模型,求出夏、秋季EWU达最大值的CRW分别为76.25%、73.61%,对应的最大值分别为1.48和 2.15 μmol·mmol−1。令EWU=0,求出夏、秋季的对应的CRW分别为15.41%、22.68%(CRW大于100%的点均已舍去)。根据回归模型的积分式求出CRW为40%~100%时黑麦草夏季EWU的平均值为1.35 μmol·mmol−1,对应的CRW分别为58.17%和94.33%。同理可求出黑麦草秋季EWU的平均值为1.89 μmol·mmol−1,对应的CRW分别为55.81%和91.42%。由此确定黑麦草夏、秋季EWU达到中等以上水平的CRW分别为58.17%~94.33%、55.81%~91.42%。
2.4 基于光合特性的黑麦草喷播基质适宜含水量阈值分级
将Pn和EWU取最大值点、平均值点、最低值点和Pn下降气孔限制转折点的喷播基质CRW临界值,作为黑麦草喷播基质适宜含水量阈值分级临界点,建立喷播基质适宜含水量的阈值分级(表4)。此分级标准将Pn和EWU作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,建立了黑麦草喷播基质适宜含水量阈值分级。以Pn=0时的水合补偿点作为临界点,低于此临界点划为“无产无效水”范围。Pn下降原因由气孔限制为主转为非气孔限制为主对应的CRW称为“Pn气孔限制转折点”。Pn和EWU取最大值时的CRW确定为“高产高效水”临界值点。依据Pn、EWU与CRW的回归模型积分式求解二者的平均值来确定Pn和EWU达到中等以上水平的临界点,在此范围内称为“中产”“中效”,此范围外称为“低产”“低效”。为更清晰地展示5种阈值分级类型,借助坐标轴对其划分参数和数值进行展示(图10)。
表 4 基于光合特性的黑麦草喷播基质适宜含水量阈值分级Table 4 Threshold gradient of suitable water content of L. perenne spraying substrate based on photosynthetic characteristics季节 临界值指标 临界点对应的CRW/% 基质适宜含水量阈值分级类型 基质适宜含水量阈值/% 夏季 Pn=0 35.02 无产无效水 <35.02 Pn(sl→nsl) 55.00 低产低效水 35.02~55.00,97.36~100.00 Pn取平均值(Pn-ave) 58.98~97.36 中产中效水 78.17~97.36 Pn取最大值(Pn-max) 78.17 中产高效水 55.00~76.25 EWU取最大值(EWU-max) 76.25 高产高效水 76.25~78.17 EWU取平均值(EWU-ave) 58.17~94.33 秋季 Pn=0 30.83 无产无效水 <30.83 Pn(sl→nsl) 55.00 低产低效水 30.83~55.00,94.33~100.00 Pn取平均值(Pn-ave) 57.71~94.33 中产中效水 76.02~94.33 Pn取最大值(Pn-max) 76.02 中产高效水 55.00~73.61 EWU取最大值(EWU-max) 73.61 高产高效水 73.61~76.02 EWU取平均值(EWU-ave) 55.81~91.42 说明:Pn=0为水合补偿点,Pn(sl→nsl)为Pn气孔限制转折点 3. 讨论
夏、秋季黑麦草光合生理参数(Pn、Tr、EWU、Gs、Ci和Ls)日变化对喷播基质含水量的阈值响应规律与黄刺玫[5]、文冠果Xanthoceras sorbifolia[6]、连翘Forsythia suspensa[7]、山杏Prunus sibirica[8]、羊草Leymus chinensis和紫花苜蓿Medicago sativa[9]等对土壤水分阈值响应的规律一致,即CRW过高或过低均会抑制植物光合作用。CRW为70%~85%时,夏、秋季Pn、Tr日变化均呈现双峰曲线,在12:00表现出“光合午休”现象。主要原因是中午气温最高,高温影响植物光合酶的活性,降低Pn;空气相对湿度低,叶片表面饱和水汽压差增大,叶片气孔保卫细胞失水过多,导致部分气孔关闭,降低Tr和Pn[10]。CRW为100%时,夏、秋季Pn日变化均呈现单峰曲线,峰值出现在12:00,但Pn日均值并不高。表明水分充足可以延缓植物光合午休,但CRW过高,喷播基质孔隙较小,不利于根系呼吸,影响根系吸收营养元素,造成光合叶绿素含量降低,从而降低Pn[11]。CRW为100%时,夏、秋季Tr日变化的峰值延迟到14:00。已有研究表明:当水分充足时光照强度是影响Tr的主要因子,光合辐射可以促进叶片气孔开放,从而增强Tr[12-13]。CRW为40%~55%时,夏、秋季Pn和Tr均处于较低水平,原因是严重水分胁迫下植物为减少体内水分散失增加了气孔阻力[4],导致Pn和Tr降低。研究表明:适度的干旱胁迫能有效提高植物的水分利用效率[14-15],与本研究观点一致,即CRW为70%~85%时黑麦草EWU达最大值,并非在CRW最高的时候。秋季EWU显著高于夏季,主要原因是秋季Tr的降低幅度比Pn的降低幅度要更大,这与许多学者[16-18]的研究结果一致。
夏、秋季黑麦草Gs日变化与Pn的变化规律基本相似,但通过对Pn和Gs的关系拟合可知:Pn和Gs在CRW≤55%时两者为非线性关系,CRW>55%时为线性正比关系,这与郎莹等[19]的研究结果一致。轻度水分胁迫下,叶片气孔部分关闭,Gs下降,进入叶片CO2减少,因此Ci降低,Ls升高,但是当CRW为55%时,下午时段Gs下降,Ci升高,表明水分胁迫可能破坏了叶片的光合结构,导致叶片吸收CO2、光合作用能力下降。这也进一步说明,在CRW为55%时,黑麦草Pn下降原因已经由气孔限制为主转变为非气孔限制为主。已有研究表明:当植物光合作用受到非气孔限制时,水分胁迫可能开始损坏光合结构[20-21],叶绿体受损并且不可逆[22],当CRW进一步降低,植物叶子变黄甚至脱落[21]。因此,CRW=55%被认为是黑麦草喷播基质适宜含水量阈值分级的临界点。
采用Pn和EWU作为土壤水分的“产”“效”指标可评价土壤水分有效性和适宜含水量范围[2-3, 5, 7, 23],主要方法有3类:第1类为聚类分析法[4, 24],即通过试验获取多个水分梯度下的Pn和EWU进行聚类分析,得到不同的水分分级临界点。由于获取的水分梯度随机性较大,该方法缺乏足够代表性。第2类为极限值法,即通过获取Pn和EWU与CRW的定量关系,找出Pn和EWU的最低值、最大值点和气孔限制转折点,以此来划分水分分级临界点。但此法并未对中等水平的“产”“效”进行划分[2,6]。第3类为回归方程拟合法,即通过建立植物Pn和EWU与CRW的回归模型,计算Pn的水合补偿点、Pn和EWU最低值点、最大值点和平均值点对应的土壤水分,并以此作为土壤水分有效性阈值分级临界点。该方法对土壤水分分级比较完整[2-3, 21]。本研究结合第2类和第3类方法,即采用回归方程拟合法计算临界值点再结合Pn气孔限制转折点来确定喷播基质适宜含水量阈值分级标准。在拟合时采用了Pn和EWU的日平均值与CRW,相比只测上午光合数据[2, 4, 6, 21]的研究更具有代表性。本研究确定的“无产无效水”“低产低效水”“中产中效水”“中产高效水”和“高产高效水”5种喷播基质适宜含水量阈值分级类型,可以根据不同的工程绿化养护要求和黑麦草不同生长阶段对水分的需求来选择利用。例如,在裸露边坡等困难立地最突出的特征是干旱和缺水,坡面工程绿化以防治水土流失和提高水分利用效率为目标,而不是充分供水达到最高产量 [24-25]。因此既满足边坡植被修复要求,又不因灌溉量过大而造成坡面水土流失、影响植物生长和浪费水资源等问题,可以保持喷播基质含水量在“中产高效水”(55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%)的范围,以此为标准进行灌溉。
4. 结论
夏、秋季黑麦草净光合速率水合补偿点的喷播基质相对含水量分别为35.02%和30.83%,即实际质量含水量分别为10.63%和9.36%,喷播基质含水量低于此值光合作用无效。夏、秋季黑麦草净光合速率下降由气孔限制转变为非气孔限制的喷播基质相对含水量均为55%,即实际质量含水量为16.70%,喷播基质含水量低于此值将对黑麦草叶片光合结构造成不可逆性损坏,建议灌溉养护时保持基质含水量不能低于此水分范围。客土喷播绿化以快速恢复植被为目标时可以保持喷播基质含水量在“高产高效水”范围,以此为标准进行灌溉,夏、秋季分别为76.25%≤CRW≤78.17%和73.61%≤CRW≤76.02%,即实际质量含水量分别为23.15%~23.73%和22.35%~23.08%。客土喷播绿化以提高水分利用效率并恢复基本植被(即恢复到当地自然植被盖度为准)为目标时,可以保持喷播基质含水量在“中产高效水”范围,以此为标准进行灌溉,夏、秋季分别为55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%,即实际质量含水量分别为16.70%~23.15%和16.70%~22.35%。
-
表 1 不同处理的土壤物理性质
Table 1. Soil physical properties of different treatments
土层/cm 处理 容重/(g·cm−3) 总孔隙度/% 毛管持水量/(g·kg−1) 田间持水量/(g·kg−1) 饱和持水量/(g·kg−1) 0~10 CR 0.67±0.02 b 58.1±2.3 a 470±17 a 434±18 a 654±24 a UR 0.77±0.06 b 52.2±1.9 a 519±40 a 464±35 a 670±51 a ck 0.88±0.04 a 52.2±1.3 a 443±20 a 406±18 a 605±29 a 10~20 CR 0.67±0.02 b 61.4±1.7 a 487±15 b 447±14 b 682±24 b UR 0.68±0.05 b 58.3±1.8 a 596±47 a 527±39 a 767±59 a ck 0.93±0.03 a 54.0±1.3 a 439±22 b 394±19 b 610±28 b 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) 表 2 不同处理的土壤化学性质
Table 2. Soil chemical properties of different treatments
土层/cm 处理 pH 有机碳/
(g·kg−1)全氮/
(g·kg−1)全磷/
(g·kg−1)全钾/
(g·kg−1)碱解氮/
(mg·kg−1)有效磷/
(mg·kg−1)速效钾/
(mg·kg−1)0~10 CR 5.09±0.06 a 36.86±2.62 b 3.27±0.24 b 0.37±0.02 b 25.29±1.61 a 101±7 b 1.4±0.1 b 189±13 a UR 4.73±0.06 b 73.25±7.25 a 6.30±0.54 a 0.58±0.04 a 16.58±0.43 b 96±11 a 1.9±0.1 a 195±15 a ck 5.03±0.09 a 33.73±2.78 b 2.82±0.23 b 0.31±0.01 b 22.67±1.10 a 95±5 b 2.1±0.1 a 105±13 b 10~20 CR 5.26±0.08 a 31.11±2.43 b 2.71±0.21 b 0.34±0.02 b 26.31±1.78 a 95±9 b 1.1±0.1 b 169±11 a UR 4.98±0.09 a 53.68±6.03 a 4.62±0.47 a 0.55±0.05 a 17.00±0.43 b 159±9 a 1.6±0.2 a 162±12 a ck 5.03±0.10 a 29.07±1.59 b 2.38±0.14 b 0.29±0.02 b 22.21±0.99 a 82±4 b 1.7±0.1 a 97±12 b 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) 表 3 不同处理的土壤胞外酶活性
Table 3. Soil extracellar enzyme activity of different treatments
土层/cm 处理 脲酶/
(μmol·g−1·h−1)酸性磷酸酶/
(μmol·g−1·h−1)β-葡萄糖苷酶/
(μmol·g−1·h−1)过氧化物酶/
(μmol·g−1·h−1)土层/cm 处理 脲酶/
(μmol·g−1·h−1)酸性磷酸酶/
(μmol·g−1·h−1)β-葡萄糖苷酶/
(μmol·g−1·h−1)过氧化物酶/
(μmol·g−1·h−1)0~10 CR 424±40 b 476±52 b 41.1±4.9 b 768±75 a 10~20 CR 338±44 b 508±59 b 37.7±4.3 b 766±132 a UR 836±101 a 944±90 a 77.0±11.6 a 1 123±152 a UR 542±75 a 884±87 a 71.9±8.0 a 1 039±184 a ck 290±71 b 701±76 b 44.0±8.0 b 770±147 a ck 243±40 b 569±66 b 37.3±7.1 b 723±104 a 说明:数据为平均值±标准误。不同小写字母表示同一土层不同处理间差异显著(P<0.05) 表 4 综合评价指标及其权重
Table 4. Comprehensive evaluation indices and weights
指标 xTNⅠ xPⅡ xAKⅠ xAPⅠ xPERⅡ xBGⅡ xACPⅡ 指标权重 0.20 0.15 0.18 0.17 0.12 0.17 0.18 公因子方差 0.951 0.772 0.880 0.830 0.598 0.857 0.888 -
[1] NAGATI M, ROY M, MANZI S, et al. Impact of local forest composition on soil fungal communities in a mixed boreal forest [J]. Plant Soil, 2018, 432(1/2): 345 − 357. [2] CRAWFORD K M, BAUER J T, COMITA S, et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis [J]. Ecol Lett, 2019, 22(8): 1274 − 1284. [3] QIAO Leilei, LI Yuanze, SONG Yahui, et al. Effects of vegetation restoration on the distribution of nutrients, glomalin-related soil protein, and enzyme activity in soil aggregates on the loess plateau, China[J/OL]. Forests, 2019, 10(9): 796[2021-12-10]. doi: 10.3390/10090796. [4] 蓝斌, 何东进. 闽北毛竹林生态系统能量分配规律的研究[J]. 应用生态学报, 2000, 11(2): 193 − 195. LAN Bin, HE Dongjin. Energy distribution of Phyllostachys pubescens ecosytem in north Fujian [J]. Chin J Appl Ecol, 2000, 11(2): 193 − 195. [5] OKUTOMI K, SHINODA S, FUKUDA H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan [J]. J Veg Sci, 1996, 7(5): 723 − 728. [6] ISAGI Y, TORII A. Range Expansion and its mechanisms in a naturalized bamboo species, Phyllostachys pubescens, in Japan [J]. J Sustainable For, 1997, 6(1/2): 127 − 141. [7] 丁丽霞, 王祖良, 周国模, 等. 天目山国家级自然保护区毛竹林扩张遥感监测[J]. 浙江林学院学报, 2006, 23(3): 297 − 300. DING Lixia, WANG Zuliang, ZHOU Guomo, et al. Monitoring Phyllostachys pubescens stands expansion in National Nature Reserve of Mount Tianmu by remote sensing [J]. J Zhejiang For Coll, 2006, 23(3): 297 − 300. [8] OSEI R, ANSONG M, ZERBE S. Comparison of socio-economic and ecological benefits of bamboo and trees: the perspectives of local communities in south-western Ghana [J]. Southern For J For Sci, 2019, 81(3): 255 − 260. [9] 白尚斌, 周国模, 王懿祥, 等. 天目山国家级自然保护区毛竹扩散过程的林分结构变化研究[J]. 西部林业科学, 2012, 41(1): 77 − 82. BAI Shangbin, ZHOU Guomo, WANG Yixiang, et al. Stand structure change of Phyllostachys pubescens forest expansion in Tianmushan National Nature Reserve [J]. J West China For Sci, 2012, 41(1): 77 − 82. [10] 王铮屹, 戴其林, 柏宬, 等. 天目山皆伐毛竹林自然更新群落类型与多样性分析[J]. 浙江农林大学学报, 2020, 37(4): 710 − 719. WANG Zhengyi, DAI Qilin, BAI Cheng, et al. Types and diversity of natural regeneration community after clear cutting of Phyllostachys edulis forests in Mount Tianmu, China [J]. J Zhejiang A&F Univ, 2020, 37(4): 710 − 719. [11] 陈旭, 刘宗悦, 徐钧杰, 等. 天目山毛竹林皆伐后群落的恢复特征[J]. 浙江农林大学学报, 2022, 39(4): 705 − 716. CHEN Xu, LIU Zongyue, XU Junjie, et al. Restoration characteristics of Phyllostachys edulis community after clear-cutting in Mount Tianmu [J]. J Zhejiang A&F Univ, 2022, 39(4): 705 − 716. [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU Rukun. The Analysis Method of Soil Agricultural Chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. [13] GERMAN D P, WEINTRAUB M N, GRANDY A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies [J]. Soil Biol Biochem, 2011, 43(7): 1387 − 97. [14] FUJII K, SHIBATA M, KITAJIMA K, et al. Plant-soil interactions maintain biodiversity and functions of tropical forest ecosystems [J]. Curr Top Ecol, 2018, 33(1): 149 − 160. [15] 池鑫晨, 宋超, 朱向涛, 等. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响[J]. 生态学杂志, 2020, 39(7): 2263 − 2272. CHI Xinchen, SONG Chao, ZHU Xiangtao, et al. Effects of moso bamboo invasion on soil active organic carbon and nitrogen in a evergreen broad-leaved forest in subtropical China [J]. Chin J Ecol, 2020, 39(7): 2263 − 2272. [16] 白尚斌, 周国模, 王懿祥, 等. 天目山保护区森林群落植物多样性对毛竹入侵的响应及动态变化[J]. 生物多样性, 2013, 21(3): 288 − 295. BAI Shangbin, ZHOU Guomo, WANG Yixiang, et al. Plant species diversity and dynamics in forests invaded by moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve [J]. Biodiversity Sci, 2013, 21(3): 288 − 295. [17] EISENBIES M H, VANCE E D, AUST W M, et al. Intensive utilization of harvest residues in southern pine plantations: quantities available and implications for nutrient budgets and sustainable site productivity [J]. Bioenergy Res, 2009, 2(3): 90 − 98. [18] 吴传敬, 郭剑芬, 许恩兰, 等. 采伐残余物不同处理方式对杉木幼林土壤有机碳组分和相关酶活性的影响[J]. 土壤学报, 2019, 56(6): 1504 − 1513. WU Chuanjin, GUO Jianfeng, XU Enlan, et al. Effects of logging residue on composition of soil carbon and activity of related enzymes in soil of a young Chinese fir plantation as affected by residue handling mode [J]. Acta Pedol Sin, 2019, 56(6): 1504 − 1513. [19] 黄启堂, 陈爱玲, 贺军. 不同毛竹林林地土壤理化性质特征比较[J]. 福建林学院报, 2006, 26(4): 299 − 302. HUANG Qitang, CHEN Ailing, HE Jun. Comparison of soil physical and chemical properties among various Phyllostachys pubescens plantation [J]. J Fujian Coll For, 2006, 26(4): 299 − 302. [20] ZHAO Yingzhi, LIANG Chenfei, SHAO Shuai, et al. Linkages of litter and soil C∶N∶P stoichiometry with soil microbial resource limitation and community structure in a subtropical broadleaf forest invaded by moso bamboo [J]. Plant Soil, 2021, 465(1/2): 473 − 490. [21] 吴家森, 姜培坤, 王祖良. 天目山国家级自然保护区毛竹扩张对林地土壤肥力的影响[J]. 江西农业大学学报, 2008, 30(4): 689 − 692. WU Jiasen, JIANG Peikun, WANG Zuliang. The effects of Phyllostachys pubescens expansionon onsoil fertility in National Nature Reserve of Mount Tianmu [J]. Acta Agric Univ Jiangxi, 2008, 30(4): 689 − 692. [22] GRANDY A S, STRICKLAND M S, LAUBER C L, et al. The influence of microbial communities, management, and soil texture on soil organic matter chemistry [J]. Geoderma, 2009, 150(3/4): 278 − 286. [23] CHODAK M, NIKLIŃSKA M. The effect of different tree species on the chemical and microbial properties of reclaimed mine soils [J]. Biol Fert Soil, 2010, 46(6): 555 − 566. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220122