-
中药荆芥是唇形科Labiatae植物荆芥Schizonepeta tenuifolia干燥后的地上部分,有解表祛风、透疹止血等功效[1]。荆芥的挥发油、黄酮等活性成分被广泛用于医药、食品和化工等领域[2-3]。
HD-Zip (Homeodomain-leucine zipper protein)基因家族是植物界一类特有的转录因子,在植物的生长发育、适应环境及胁迫应答等方面起到重要作用。HD (Homeodomain)蛋白是由Homeobox (HB)基因编码的高度保守的蛋白质结构域,由60个氨基酸组成。该蛋白中存在1个特征性的三螺旋结构,可以特异结合DNA序列,以此对基因进行调控[4−5]。此外,HD-Zip基因家族还有1个亮氨酸拉链保守结构域(leucine zipper-loop-zipper,LZ),这是蛋白形成二聚体所必需的结构。根据蛋白的序列保守性、蛋白功能、基因结构等,将该家族分为4个亚家族:HD-Zip Ⅰ ~Ⅳ[6]。Ⅰ亚家族主要参与非生物胁迫及环境适应性;Ⅱ亚家族主要与生长素响应相关;Ⅲ亚家族主要参与不同的发育事件,例如顶端分生组织、维管束的发育,还与植物激素调控相关;Ⅳ亚家族主要在植物的表皮中特异性表达,主要调节表皮的分化、毛状体形成等[7]。
目前,HD-Zip基因家族在多种植物中被鉴定并表征,例如拟南芥Arabidopsis thaliana[8]、水稻Oryza sativa[9]、小麦Triticum aestivum[10]等,但尚未有荆芥HD-Zip基因家族的相关研究。本研究以荆芥的基因组作为基础,利用生物信息学方法系统鉴定荆芥HD-Zip基因家族成员,并对其蛋白质理化性质、染色体定位、基因结构、共线性分析以及不同时期的表达规律进行分析,为今后深入研究荆芥基因家族的功能和调控机制奠定基础。
-
荆芥基因组大小为798 Mb,Q20(碱基被测错的概率为1%)为94.67%,Q30(碱基被测错的概率为1‰)为89.41%,说明测序质量较好(Q20≥93%、Q30≥86%),GC含量为39.34%,经过Hi-C组装后,共有696 Mb的基因组序列被定位到6条染色体上(Chr 01~06),占比91.38%。以上数据说明荆芥的基因组质量较好,有助于完整地挖掘HD-Zip基因家族。为了鉴定荆芥中HD-Zip基因,根据4个亚家族HD-Zip Ⅰ、Ⅱ、Ⅲ、Ⅳ的蛋白保守结构域进行筛选,共筛选到42条可能的HD-Zip基因家族序列,其中HD-Zip Ⅰ亚家族16条,HD-Zip Ⅱ亚家族7条,HD-Zip Ⅲ亚家族5条,HD-Zip Ⅳ亚家族14条,并通过在线网站Expasy网站进行蛋白分子量和等电点的预测(表1)。其中40条基因全部定位到对应染色体(Chr 01~06),Sch000029960和Sch000004651未锚定在染色体上(图1)。荆芥HD-Zip基因仅在2~4号染色体上集中分布,说明该基因家族在染色体上分布不均匀。荆芥HD-Zip的基因长度为528~2586 bp;分子量为20.33~94.18 kDa;等电点为4.59~9.05。因此,HD-Zip的基因和蛋白长度跨度较大,HD-Zip Ⅲ和Ⅳ的基因长度约2000 bp,HD-Zip Ⅰ和Ⅱ在1000 bp以下,该结果与分子量具有相关性,而等电点主要取决于氨基酸中酸性氨基酸和碱性氨基酸的数量比,大多数蛋白(76.2%)等电点小于7.0,证明荆芥HD-Zip可能是一类酸性蛋白。
表 1 荆芥HD-Zip基因家族的蛋白特征
Table 1. Protein characteristics of HD-Zip gene family in S. tenuifolia
亚家族 基因ID CDS长
度/bp蛋白长
度/个分子量/
kDa等电点 染色体 亚家族 基因ID CDS长
度/bp蛋白长
度/个分子量/
kDa等电点 染色体 HD-Zip Ⅰ Sch000003181 900 299 33.847 4.88 Chr 01 Sch000003831 528 175 20.331 8.58 Chr 01 Sch000016777 897 298 34.379 6.55 Chr 04 Sch000019486 822 273 31.100 4.59 Chr 04 HD-Zip Ⅲ Sch000001735 2562 853 93.306 5.74 Chr 01 Sch000026498 927 308 35.350 5.01 Chr 06 Sch000019857 2511 836 91.461 5.94 Chr 04 Sch000008725 822 273 31.034 4.83 Chr 02 Sch000014693 2493 830 91.021 5.84 Chr 03 Sch000005997 912 303 34.369 4.97 Chr 02 Sch000026324 2586 861 94.183 6.14 Chr 06 Sch000020328 966 321 35.730 4.81 Chr 04 Sch000028231 2529 842 92.434 6.17 Chr 06 Sch000016424 867 288 32.633 6.32 Chr 04 Sch000017902 879 292 33.207 6.07 Chr 04 HD-Zip Ⅳ Sch000026062 2166 721 79.071 5.98 Chr 06 Sch000002474 876 291 32.531 5.7 Chr 01 Sch000008059 2163 720 79.056 6.23 Chr 02 Sch000008983 696 231 26.832 6.32 Chr 02 Sch000029960 2181 726 79.526 5.64 HiC_scaffold_8 Sch000006831 693 230 26.615 6.96 Chr 02 Sch000011892 2418 805 87.913 5.79 Chr 03 Sch000019278 600 199 22.673 8.44 Chr 04 Sch000009216 2196 731 79.888 5.79 Chr 02 Sch000021651 546 181 21.788 5.84 Chr 05 Sch000019506 2400 799 87.073 6.04 Chr 04 Sch000013738 654 217 24.934 7.59 Chr 03 Sch000012322 2490 829 91.502 5.41 Chr 03 Sch000016710 621 206 24.472 5.44 Chr 04 Sch000012213 2490 829 91.502 5.41 Chr 03 Sch000004651 2490 829 91.502 5.41 HiC_scaffold_100 HD-Zip Ⅱ Sch000028530 891 296 327.360 7.52 Chr 06 Sch000018911 2070 689 77.061 6.28 Chr 04 Sch000010966 879 292 32.623 7.62 Chr 03 Sch000005323 1944 647 73.264 7.27 Chr 02 Sch000019272 795 264 294.950 8.59 Chr 04 Sch000022402 2307 768 84.180 5.81 Chr 05 Sch000008316 783 260 29.093 8.12 Chr 02 Sch000024046 2274 757 84.279 6.15 Chr 06 Sch000025447 879 292 32.351 9.05 Chr 06 Sch000008675 1884 627 69.905 6.18 Chr 02 Sch000011951 645 214 24.334 8.24 Chr 03 说明:CDS指蛋白编码区 -
将以上42条蛋白序列与已知的HD-Zip蛋白序列进行ML树的构建(图2),可知:荆芥的HD-Zip和拟南芥及其他物种HD-Zip的蛋白序列被聚为四大支,与已表征HD-Zip基因家族的4个亚家族分类一致,且在荆芥基因组中,每个亚家族基因的占比与拟南芥的HD-Zip Ⅰ ~Ⅳ之间的比例相似,其中HD-Zip Ⅰ与Ⅳ占比最大,HD-Zip Ⅲ占比最少。从进化树中可以发现:HD-Zip Ⅲ先与Ⅳ聚为一支,再与HD-Zip Ⅰ和Ⅱ聚为一支,说明HD-Zip Ⅲ可能与Ⅳ的亲缘关系更近。
-
利用TBtools软件绘制荆芥HD-Zip基因结构图,分析基因内含子和外显子的分布情况。图3显示:HD-Zip Ⅰ与Ⅱ的基因长度较为相近,内含子1~3个(实线),外显子2~4个(黄色标识),基因结构比较简单。HD-Zip Ⅲ与Ⅳ基因长度较为接近,内含子8~17个,外显子9~17,其中HD-Zip Ⅲ的内含子和外显子的数量最多。以上基因结构和长度结果与ML进化树聚类结果较为一致。
利用在线网站MEME对42条HD-Zip基因家族的蛋白序列进行保守基序(Motif)的检索,一共确认了10个不同的基序(图4)。其中,所有蛋白均存在Motif 1~3,这3个保守基序构成了HD-Zip基因家族特征的保守基序HD、LZ。HD-Zip Ⅲ和Ⅳ的Motif 4、Motif 5构成HD-Zip Ⅲ和Ⅳ特有的START保守结构域。从Motif结构分布上看到,HD-ZipⅢ和Ⅳ的Motif最为丰富,可能具有多样的生物学功能,每个亚家族之间的Motif分布较为一致。
-
提取荆芥HD-Zip的5′UTR上游的2 kb序列为启动子序列,利用在线网站PlantCARE进行顺式元件的预测,其中光响应的顺式元件出现频率最高,其次为脱落酸响应元件,MeJA响应元件,厌氧感应元件以及MYB结合的位点(图5)。说明该基因家族可能与以上的生物学功能相关。
图 5 荆芥HD-Zip基因家族的顺式作用元件分布
Figure 5. Distribution of cis-acting elements of HD-Zip gene family in S. tenuifolia
对荆芥的42个HD-Zip家族基因进行基因组内串联重复分析,发现Sch000008983和Sch000006831在Chr 02上串联重复,Sch000012213与Sch000012322在Chr 03上串联重复(图6);经过基因组内的共线性分析发现,荆芥的9个HD-Zip家族基因在基因组内存在共线性,说明成对的共线性基因可能具有极为相似的功能(图7)。通过荆芥与拟南芥的基因组之间的共线性分析发现:一共有37对共线性的HD-Zip基因(图8)。综上,通过与拟南芥HD-Zip基因构建进化树分析及共线性分析,有助于利用拟南芥的基因功能推断荆芥HD-Zip中相应基因的功能。
图 6 荆芥HD-Zip基因家族的组内串联重复分析
Figure 6. Tandem repeat analysis of HD-Zip gene family in genome of S. tenuifolia
-
根据课题组前期观察,10 d幼苗的叶子和茎具有丰富的指状腺毛,20 d幼苗的叶子和茎具有较多的头状腺毛和腺鳞,35 d幼苗的叶子和茎具有丰富的腺鳞。因此,对荆芥不同生长时期叶片(10、20、35 d)及根(35 d)进行转录组分析,发现HD-Zip Ⅰ主要在幼叶10 d中表达,HD-ZipⅡ和Ⅲ主要在根中表达,HD-Zip Ⅳ亚家族主要在叶中表达(图9)。研究发现:HD-Zip Ⅳ基因主要调节表皮的分化[12],结合荆芥腺毛的分布情况,推测荆芥的HD-Zip Ⅳ与荆芥腺毛和非腺毛的形成与分化相关。
Genome-wide identification and expression analysis of HD-Zip gene family in Schizonepeta tenuifolia
-
摘要:
目的 鉴定荆芥Schizonepeta tenuifolia的HD-Zip基因家族,利用生物信息学方法分析其在全基因组中的分布和相关特征以及在不同时期中的表达规律,为该家族基因的进一步研究奠定基础。 方法 根据已经表征的HD-Zip基因,筛选荆芥基因组内的HD-Zip基因序列,利用MEME、PlantCARE、NCBI、MEGA X、MCScanX、Circos等在线网站及软件对蛋白序列进行基本理化性质分析、进化树构建、染色体定位、基因结构分析、共线性基因分析等。 结果 在荆芥全基因组中共鉴定到42条HD-Zip基因序列,它们可被分为4个亚家族,分别含有16、7、5、14个基因,亚家族之间的基因长度、结构及保守基序差异显著,但在亚家族内部保守,荆芥基因组与拟南芥Arabidopsis thaliana基因组共线性分析发现有37对基因,可能具有相似的生物学功能。荆芥的4个亚家族基因的顺式元件中均高频出现了光响应、脱落酸响应、MeJA响应等元件,在不同生长时期的叶片及部位的转录组数据中具有不同的表达趋势,Ⅰ亚家族主要在幼叶中表达,Ⅱ和Ⅲ亚家族主要在根中在表达,Ⅳ亚家族主要在叶中表达。 结论 在荆芥基因组中共获得42条HD-Zip基因序列,被分为4个亚家族(HD-ZipⅠ~Ⅳ),亚家族内部高度保守,亚家族之间差异显著,其基因结构、保守结构域及表达模式不同。亚家族Ⅰ和Ⅱ,亚家族Ⅲ和Ⅳ亲缘关系更近,HD-Zip基因具有组织表达差异性,协同调控了荆芥的生长发育和次生代谢。图9表1参25 -
关键词:
- 荆芥 /
- HD-Zip基因家族 /
- 表达分析 /
- 系统进化
Abstract:Objective This study, with the identification of the HD-Zip gene family in Schizonepeta tenuifolia and an bioinformatic analysis of its distribution and related characteristics in the whole genome and expression pattern in different stages, is aimed to provide a basis for further study of this gene family. Method Genes in the genome were first screened in accordance with the characterized HD-Zip genes before MEME, Plant CARE, NCBI, MEGA X, MCScanX and Circos were used for the analysis of the basic properties of protein sequences, the construction of Maximum Likeliood (ML) tree, mapping of chromosomes and the analysis of gene structure and colinear gene respectively. Result (1) A total of 42 HD-Zip genes were identified and they could be divided into four subgroups(Ⅰ−Ⅳ), containing 16, 7, 5, 14 genes respectively. (2) The gene length, structure and Motif of the subgroups varied significantly from each though relatively reserved with in each of them. (3) The collinear analysis of the genome of S. tenuifolia and Arabidopsis thaliana showed that 37 pairs of genes may have similar biological functions with light response, abscisic acid response and MeJA response found in cis-elements of 4 subfamily genes promoters of S. tenuifolia, showing different expression profiles in the transcriptome data of different growth stages of leaves and different parts. (4) The HD-ZipⅠ was mainly expressed in young leaves, HD-Zip Ⅱ and Ⅲ were mainly expressed in roots whereas HD-Zip Ⅳ was mainly expressed in leaves. Conclusion The total 42 HD-Zip genes obtained from S. tenuifolia genome were divided into 4 subgroups (Ⅰ−Ⅳ) with highly conserved genes and significant differences among subgroups with their gene structure, motif, and expression pattern being different. HD-ZipⅠ and Ⅱ, and HD-ZipⅢ and Ⅳ are more closely related to each other with HD-Zip genes expressed specifically indifferent tissues and synergistically regulating the growth, development and secondary metabolism of S. tenuifolia. The results of this study provide a bioinformatic reference for the further study of this family’s biological functions. [Ch, 9 fig. 1 tab. 25 ref.] -
Key words:
- Schizonepeta tenuifolia /
- HD-Zip gene family /
- expression analysis /
- system evolution
-
表 1 荆芥HD-Zip基因家族的蛋白特征
Table 1. Protein characteristics of HD-Zip gene family in S. tenuifolia
亚家族 基因ID CDS长
度/bp蛋白长
度/个分子量/
kDa等电点 染色体 亚家族 基因ID CDS长
度/bp蛋白长
度/个分子量/
kDa等电点 染色体 HD-Zip Ⅰ Sch000003181 900 299 33.847 4.88 Chr 01 Sch000003831 528 175 20.331 8.58 Chr 01 Sch000016777 897 298 34.379 6.55 Chr 04 Sch000019486 822 273 31.100 4.59 Chr 04 HD-Zip Ⅲ Sch000001735 2562 853 93.306 5.74 Chr 01 Sch000026498 927 308 35.350 5.01 Chr 06 Sch000019857 2511 836 91.461 5.94 Chr 04 Sch000008725 822 273 31.034 4.83 Chr 02 Sch000014693 2493 830 91.021 5.84 Chr 03 Sch000005997 912 303 34.369 4.97 Chr 02 Sch000026324 2586 861 94.183 6.14 Chr 06 Sch000020328 966 321 35.730 4.81 Chr 04 Sch000028231 2529 842 92.434 6.17 Chr 06 Sch000016424 867 288 32.633 6.32 Chr 04 Sch000017902 879 292 33.207 6.07 Chr 04 HD-Zip Ⅳ Sch000026062 2166 721 79.071 5.98 Chr 06 Sch000002474 876 291 32.531 5.7 Chr 01 Sch000008059 2163 720 79.056 6.23 Chr 02 Sch000008983 696 231 26.832 6.32 Chr 02 Sch000029960 2181 726 79.526 5.64 HiC_scaffold_8 Sch000006831 693 230 26.615 6.96 Chr 02 Sch000011892 2418 805 87.913 5.79 Chr 03 Sch000019278 600 199 22.673 8.44 Chr 04 Sch000009216 2196 731 79.888 5.79 Chr 02 Sch000021651 546 181 21.788 5.84 Chr 05 Sch000019506 2400 799 87.073 6.04 Chr 04 Sch000013738 654 217 24.934 7.59 Chr 03 Sch000012322 2490 829 91.502 5.41 Chr 03 Sch000016710 621 206 24.472 5.44 Chr 04 Sch000012213 2490 829 91.502 5.41 Chr 03 Sch000004651 2490 829 91.502 5.41 HiC_scaffold_100 HD-Zip Ⅱ Sch000028530 891 296 327.360 7.52 Chr 06 Sch000018911 2070 689 77.061 6.28 Chr 04 Sch000010966 879 292 32.623 7.62 Chr 03 Sch000005323 1944 647 73.264 7.27 Chr 02 Sch000019272 795 264 294.950 8.59 Chr 04 Sch000022402 2307 768 84.180 5.81 Chr 05 Sch000008316 783 260 29.093 8.12 Chr 02 Sch000024046 2274 757 84.279 6.15 Chr 06 Sch000025447 879 292 32.351 9.05 Chr 06 Sch000008675 1884 627 69.905 6.18 Chr 02 Sch000011951 645 214 24.334 8.24 Chr 03 说明:CDS指蛋白编码区 -
[1] 国家药典委员会. 中华人民共和国药典 (一部)[M]. 北京: 中国医药科技出版社, 2020: 243 − 244. National Pharmacopoeia Board. Chinese Pharmacopoeia (Volume Ⅰ)[M]. Beijing: China Medical Science Press, 2020: 243 − 244. [2] LIU C, SRIVIDYA N, PARRISH A N, et al. Morphology of glandular trichomes of Japanese catnip (Schizonepeta tenuifolia Briquet) and developmental dynamics of their secretary activity [J]. Phytochemistry, 2018, 150: 23 − 30. [3] 樊佳新, 王帅, 孟宪生, 等. HPLC法测定不同产地荆芥中6种黄酮类成分[J]. 中草药, 2017, 48(11): 2292 − 2295. FAN Jiaxin, WANG Shuai, MENG Xiansheng, et al. Determination of six flavonoids in Schizonepeta tenuifolia from different areas by HPLC [J]. Chinese Traditional and Herbal Drugs, 2017, 48(11): 2292 − 2295. [4] FEDERICO DA, PABLO A M, CARLOS A D, et al. The true story of the HD-Zip family [J]. Trends in Plant Science, 2007, 12(9): 419 − 426. [5] 李媛. 大麦HD-Zip基因家族分析及功能研究[D]. 西宁: 青海大学, 2020. LI Yuan. Analysis and Functional Study of HD-Zip Gene Family in Barley [D]. Xining: Qinghai University, 2020. [6] SESSA G, CARABELLUI M, POSSENTI M, et al. Multiple links between HD-Zip proteins and hormone networks[J/OL]. International Journal of Molecular Sciences, 2018, 19(12): 4047[2022-05-04]. doi: 10.3390/ijms19124047. [7] MIYUKI N, HIROSHI K, MITSUTOMO A, et al. Characterization of the class Ⅳ homeodomain-leucine zipper gene family in Arabidopsis [J]. Plant Physiology, 2006, 141(4): 1363 − 1375. [8] BRANDT R, CABEDO M, XIE Y, et al. Homeodomain leucine-zipper proteins and their role in synchronizing growth and development with the environment [J]. Journal of Integrative Plant Biology, 2014, 56(6): 518 − 526. [9] LI Yuxia, YANG Zongran, ZHANG Yuanyuan, et al. The roles of HD-ZIP proteins in plant a biotic stress tolerance[J/OL]. Frontiers in Plant Science, 2022, 13: 1027071[2022-05-04]. doi: 10.3389/fpls.2022.1027071. [10] YUE Hong, SHU Duntao, WANG Meng, et al. Genome-wide identification and expression analysis of the HD-Zip gene family in wheat (Triticum aestivum L. )[J/OL]. Genes, 2018, 9(2): 70[2022-05-02]. doi: 10.3390/genes9020070. [11] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194 − 1202. [12] MA Gang, ZELMAN A K, APICELLA P V, et al. Genome-wide identification and expression analysis of homeodomain leucine zipper subfamily Ⅳ(HD-Zip Ⅳ) gene family in Cannabis sativa L. [J/OL]. Plants. 2022, 11(10): 1307[2022-05-02]. doi: 10.3390/plants11101307. [13] ZHAO Yang, ZHOU Yuqing, JIANG Haiyan, et al. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize[J/OL]. PLoS One, 2011, 6(12): e28488[2022-05-02]. doi: 10.1371/journal.pone.0028488. [14] WANG Zhong, WANG Shanshan, XIAO Yansong, et al. Functional characterization of a HD-Zip Ⅳ transcription factor NtHDG2 in regulating flavonols biosynthesis in Nicotiana tabacum [J]. Plant Physiology and Biochemistry, 2020, 146: 259 − 268. [15] WAN Li, DONG Jieya, CAO Minxuan, et al. Genome-wide identification and characterization of HD-Zip genes in potato [J]. Genes, 2019, 697: 103 − 117. [16] SCHRICK K, NGUYEN D, KARLOWSKI W M, et al. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors[J/OL]. Genome Biology, 2004, 5: R41[2022-05-02]. doi: 10.1186/gb-2004-5-6-r41. [17] MUKHERIEE K, BURGLIN TR, MEKHLA, a novel domain with similarity to PAS domains, is fused to plant homeodomain-leucine zipper Ⅲ proteins[J]. Plant Physiology, 2006, 140(4): 1142 − 1150. [18] GUO Qing, JIANG Jiahui, YAO Wenjing, et al. Genome-wide analysis of poplar HD-Zip family and over-expression of PsnHDZ63 confers salt tolerance in transgenic Populus simonii × P. nigra[J/OL]. Plant Science, 2021, 311: 111021[2022-11-21]. doi: 10.1016/j.plantsci.2021.111021. [19] 邵晨冰, 黄志楠, 白雪滢, 等. 辣椒HD-Zip基因家族鉴定、系统进化及表达分析[J]. 中国农业科学, 2020, 53(5): 1004 − 1017. SHAO Chenbing, HUANG Zhinan, BAI Xueying, et al. Identification, systematic evolution and expression analysis of HD-Zip gene family in Capsicum annuum [J]. Scientia Agricultura Sinica, 2020, 53(5): 1004 − 1017. [20] NAOKO K, HITOMI O, YOSHIBUMI K, et al. Mutations in epidermis-specific HD-Zip Ⅳ genes affect floral organ identity in Arabidopsis thaliana [J]. The Plant Journal, 2013, 75(3): 430 − 440. [21] CHALVIN C, DRE VENSK S, DRON M, et al. Genetic control of glandular trichome development [J]. Trends in Plant Science, 2020, 25(5): 477 − 487. [22] YAN Tingxiang, CHEN M, SHEN Q, et al. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua [J]. New Phytologist, 2017, 213(3): 1145 − 1155. [23] HULSKAMP M, MISRA S, JURGENS G. Genetic dissection of trichome cell development in Arabidopsis [J]. Cell, 1994, 76(3): 555 − 566. [24] 蒋征, 王红, 吴啟南, 等. 荆芥穗药材腺鳞内含物定性及3种主要萜类的定量研究[J]. 中药材, 2016, 39(1): 31 − 36. JIANG Zheng, WANG Hong, WU Qi’nan, et al. Qualitative and quantitative analysis of major constituents of gland products in peltate glandular trichomes of Schizonepetae Spica [J]. Journal of Chinese Medicinal Materials, 2016, 39(1): 31 − 36. [25] ZHOU Peina, DANG Jingjie, SHI Zunrui, et al. Identification and characterization of a novel gene involved in glandular trichome development in Nepeta tenuifolia[J/OL]. Frontiers in Plant Science, 2022, 13: 936244[2022-05-02]. doi: 10.3389/fpls.2022.936244. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220390