留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析

刘俊 李龙 陈玉龙 刘燕 吴耀松 任闪闪

黄锦春, 万思琦, 陈扬, 等. 利用ISSR与SRAP分子标记分析金线莲种质资源遗传多样性[J]. 浙江农林大学学报, 2023, 40(1): 22-29. DOI: 10.11833/j.issn.2095-0756.20220473
引用本文: 刘俊, 李龙, 陈玉龙, 等. 杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析[J]. 浙江农林大学学报, 2022, 39(3): 475-485. DOI: 10.11833/j.issn.2095-0756.20210385
HUANG Jinchun, WAN Siqi, CHEN Yang, et al. Genetic diversity of Anoectochilus roxburghii based on ISSR and SRAP molecular markers[J]. Journal of Zhejiang A&F University, 2023, 40(1): 22-29. DOI: 10.11833/j.issn.2095-0756.20220473
Citation: LIU Jun, LI Long, CHEN Yulong, et al. Genome-wide identification, system evolution and expression pattern analysis of CONSTANS-like in Eucommia ulmoides[J]. Journal of Zhejiang A&F University, 2022, 39(3): 475-485. DOI: 10.11833/j.issn.2095-0756.20210385

杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析

DOI: 10.11833/j.issn.2095-0756.20210385
基金项目: 河南省高等学校重点科研项目(22A360005);国家林业和草原局/北京市共建竹藤科学与技术重点实验室开放基金资助项目(ICBR-2020-05);国际竹藤中心安徽太平试验中心开放课题(1632021006-4);河南中医药大学博士科研启动基金项目(RSBSJJ2019-04)
详细信息
    作者简介: 刘俊(ORCID: 0000-0003-0468-5927),助理研究员,博士,从事植物分子生物学研究。E-mail: liujun_0325@163.com
  • 中图分类号: S718.4; Q754

Genome-wide identification, system evolution and expression pattern analysis of CONSTANS-like in Eucommia ulmoides

  • 摘要:   目的  揭示CONSTANS-like在杜仲Eucommia ulmoides基因组中的分布、结构特征及表达模式。  方法  利用生物信息学方法,对杜仲CONSTANS-like基因家族进行鉴定及理化性质、进化关系、基因结构、启动子元件和表达模式分析。  结果  杜仲基因组中共鉴定到8个EuCOLs基因,分别命名为EuCOL1~EuCOL8,氨基酸数目为315~469,理论等电点分布范围为5.10~6.47,分子量为35.21~52.65 kDa。亚细胞定位预测均定位在细胞核中,为亲水性蛋白,分布于8条染色体。系统进化分为2个亚家族(群组Ⅰ和群组 Ⅲ),分别包含2和6个EuCOLs蛋白,同一亚家族基序具有相似性。EuCOLs基因结构简单,启动子中含有多个光周期响应元件。表达模式分析显示:EuCOLs在杜仲叶片发育中表达水平相对较低,EuCOL7在杜仲胶形成中表达量最高,各家族成员表达特征存在差异。蛋白互作预测显示:EuCOL7可与多个光周期响应蛋白互作。  结论  杜仲CONSTANS-like基因家族含有典型的CCT和B-box结构域,可能参与叶片发育及杜仲胶的形成。图8表1参56
  • 全球气候变化带来的一系列生态、经济、社会问题日益严重,引发了国际社会的高度重视。导致全球气候变暖的重要原因是二氧化碳(CO2)年排放量不断增加。目前除工业减排CO2外,植物固碳已成为解决这一问题的重要途径[1]。陆地碳汇是全球碳循环的基础,并正在被用来抵消人为CO2排放量的增加,其中森林生态系统作为陆地生态系统中最大的碳库,存储着整个陆地生态系统80%的地上碳和70%的土壤碳[23]。植硅体是植物根系吸收土壤溶液中的单硅酸[Si(OH)4],在蒸腾拉力的作用下沉积于细胞壁、细胞腔或细胞间隙内的非晶质二氧化硅颗粒物[4-6]。植硅体形成过程中会包裹一定量的有机碳,称为植硅体封存有机碳(phytolith-occluded organic carbon, PhytOC)[78],这部分被包裹的有机碳由于受到植硅体的保护而具有耐高温和高度抗氧化等特性,如果没有大的地质变迁,便能够在土壤以及沉积物中保存长达数千年甚至数万年之久,从而成为陆地土壤的长期固碳机制之一[9-11]。因此,植硅体封存的有机碳在减少大气CO2含量、缓解温室效应等方面具有重要的意义[1214]。已有研究主要集中于植硅体碳含量较高的富硅植物,例如水稻Oryza sativa[15]、黍Panicum miliaceum、Setaria italica[9]、小麦Triticum aestivum[2]、甘蔗Saccharum officinarum[3]等农作物、草地和湿地植物[16-17]、竹类[18-20]。马尾松Pinus massoniana是分布面积较广的一种森林类型,也是中国松科Pinaceae植物中用途最广的先锋树种。近年来,有学者研究发现:马尾松生态系统有着可观的植硅体碳储量,其叶片中植硅体封存有机碳含量高于同为针叶林的杉木Cunninghamia lanceolata甚至高于禾本科Poaceae植物[21-22]。植物生物量对植硅体碳储量也有着很大的影响[20, 23]。张振等[24]研究发现:马尾松树干生物量占到总生物量的77.2%,由此可知马尾松树干植硅体碳汇潜力不可忽视。同一植物不同器官植硅体封存有机碳含量不同[25],同一树种不同种源由于适应性和生理生态差异,植硅体封存有机碳储量也会产生差异。关于马尾松不同种源植硅体碳汇差异的研究鲜见报道,本研究对来自全国的20个马尾松种源树干进行采样分析,研究不同马尾松种源树干植硅体碳储量的差异,并聚类分析,筛选出马尾松树干植硅体碳封存潜力较强的种源,为中国马尾松林生态系统植硅体碳封存研究提供依据。

    研究区位于浙江省淳安县千岛湖东南湖区的姥山林场马尾松种源试验林(29°33′30″N,119°02′55″E),地处中亚热带地区,雨量充沛,四季分明,年平均气温为17.0 ℃,≥10 ℃的年积温为 5 410 ℃,年平均日照时数1 951 h,年降水量1 430 mm,无霜期263 d。姥山林场设置的试验地海拔150 m,坡度20°~30°,土壤为红壤土类的黄红壤亚类,土壤厚度80 cm以上,土壤有机质15.80 g·kg−1,碱解氮53.50 mg·kg−1,速效钾18.50 mg·kg−1,有效磷0.99 mg·kg−1,交换性钙128.00 mg·kg−1,交换性镁9.24 mg·kg−1

    1984年春,在姥山林场栽植了来自14个省区的49个马尾松种源1年生裸根苗,采用双列小区完全随机排列,重复8次(8株),株行距2 m×2 m,管理措施一致,用以筛选速生、优质的马尾松种源[26]。2017年12月对保存完好的20个马尾松种源植株进行调查、采样,通过每木测定,得到每个种源的平均木,随机选取3个小区,每个种源选取胸径与平均木相近的3株植株作为标准株,人工摘取标准株新鲜叶片于样品袋中,新鲜叶片带回实验室后用去离子水洗净,105 ℃杀青25 min,75 ℃下烘干48 h,再磨碎后于塑封袋保存。至2018年4月,再次砍伐20个种源胸径与平均木相近的3株标准株对马尾松进行树干取样,取得的树干圆盘带回实验室进行烘干磨碎处理,分析测定。

    所有植物样品的碳和氮采用Elementar Vario MAX CN碳氮元素分析仪测定;植物植硅体的提取采用微波消解法[27],为了大量提取植硅体而在此方法上有所改进,用浓硝酸和双氧水大量消煮前处理,再进行微波消解;而植硅体封存有机碳的测定同植物碳和氮的测定方法。土壤有机质采用重铬酸钾外加热法测定;碱解氮采用碱解法测定;有效磷采用Bray法测定;速效钾采用乙酸铵浸提,火焰光度法测定;交换性钙、镁采用EDTA滴定法测定[28]

    w植硅体=m植硅体/m样品,其中:w植硅体为植硅体质量分数(g·kg−1),m植硅体为植硅体质量(g),m样品为样品干质量(kg)。w有机碳=m有机碳/m植硅体,其中:w有机碳为植硅体封存有机碳质量分数(g·kg−1),m有机碳为植硅体有机碳质量(g),m植硅体为植硅体质量(kg)。所以,w植硅体碳=m有机碳/m样品,其中:w植硅体碳为植硅体碳质量分数(g·kg−1)。C植硅体碳=B树干×w植硅体碳,其中:C植硅体碳为标准株树干植硅体碳储量(g·株−1),B树干为树干生物量(kg·株−1)。3次重复,取平均值。数据处理用SPSS 18.0完成,用Duncan新复极差法检验不同处理的差异显著性,并用植硅体质量分数、植硅体封存有机碳质量分数等碳储指标对所有参试种源进行Q型聚类分析。

    表1显示:20个马尾松种源树干的总有机碳质量分数无显著差异,其变化范围为467.6~489.6 g·kg−1,而在不同种源中树干植硅体质量分数存在显著差异,表现为安徽太平32(0.845 g·kg−1)、贵州黄平122(0.702 g·kg−1)显著高于湖北通山84(0.465 g·kg−1)(P<0.05),而后者又显著高于广东乳源102(0.305 g·kg−1)(P<0.05)。不同马尾松种源树干植硅体封存有机碳质量分数的变化范围为126.8~210.2 g·kg−1,存在显著差异(P<0.05),树干植硅体封存有机碳质量分数以江西吉安63(210.2 g·kg−1)最高,显著高于福建邵武91(172.4 g·kg−1)(P<0.05),后者又显著高于浙江庆元54(126.8 g·kg−1)(P<0.05)。20个马尾松种源树干植硅体碳质量分数变化范围为0.049~0.128 g·kg−1,也存在显著差异(P<0.05)。树干植硅体碳质量分数以安徽太平32(0.128 g·kg−1)最高,显著高于贵州黎平124(0.076 g·kg−1)(P<0.05),后者又显著高于广东乳源102(0.049 g·kg−1)(P<0.05)。

    表 1  不同马尾松种源树干总有机碳、植硅体、植硅体封存有机碳和植硅体碳质量分数的比较
    Table 1  Comparison of the contents of total organic carbon(TOC), phytoliths, OC in phytoliths, and phytolith in dry matter in trunk of masson pine from different provenances
    种源号总有机碳/(g·kg−1)植硅体/(g·kg−1)植硅体封存有机碳/(g·kg−1)植硅体碳/(g·kg−1)
    河南桐柏21 489.6±22.6 a0.421±0.049 cdef188.9±16.8 abc0.073±0.020 cdef
    安徽太平32 485.9±5.4 a0.845±0.033 a148.0±15.9 de0.128±0.008 a
    安徽屯溪33 478.5±13.9 a0.368±0.075 def167.5±16.8 cd0.059±0.013 def
    浙江庆元54 484.0±14.3 a0.519±0.057 c126.8±11.8 e0.070±0.016 cdef
    浙江淳安56 474.1±9.9 a0.437±0.062 cdef148.4±14.2 de0.064±0.004 def
    江西吉安63 483.5±14.5 a0.380±0.094 cdef210.2±26.7 a0.070±0.009 cdef
    湖南安化72 488.7±4.8 a0.330±0.026 ef177.2±21.6 abcd0.058±0.006 def
    湖南资兴74 478.3±10.8 a0.405±0.075 cdef167.2±24.7 cd0.066±0.003 def
    湖北远安81 477.5±14.0 a0.388±0.079 cdef183.4±16.4 abcd0.067±0.006 cdef
    湖北通山84 475.5±3.4 a0.465±0.119 cde204.5±11.8 ab0.091±0.026 bc
    福建邵武91 475.8±13.6 a0.410±0.082 cdef172.4±10.0 bcd0.069±0.021 cdef
    福建永定95 467.6±8.2 a0.395±0.094 cdef147.6±22.1 de0.051±0.002 ef
    广东乳源102479.9±10.9 a0.305±0.074 f162.2±18.3 cd0.049±0.013 f
    广东信宜105476.5±10.2 a0.481±0.069 cd194.1±19.3 abc0.111±0.024 ab
    广西恭城111474.7±10.5 a0.396±0.036 cdef205.1±15.5 ab0.081±0.008 cd
    广西岑溪115472.9±5.0 a0.519±0.033 c205.7±5.5 ab0.107±0.010 ab
    贵州黄平122476.5±11.6 a0.702±0.103 b187.6±33.7 abc0.121±0.009 a
    贵州都匀123476.6±8.2 a0.364±0.002 def148.5±5.5 de0.054±0.002 ef
    贵州黎平124469.1±2.8 a0.465±0.119 cde187.0±27.6 abc0.076±0.001 cde
    四川南江131477.1±12.9 a0.335±0.043 ef190.3±19.2 abc0.059±0.010 def
      说明:表内的数据为平均值±标准差;同列不同字母表示不同种源间差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格

    表2可知:20个马尾松种源平均胸径和株高变化范围为分别17.1~32.3 cm和16.3~19.5 m。马尾松标准株树干生物量最高的是广西岑溪115(295.39 kg·株−1),最低为河南桐柏21(76.48 kg·株−1);马尾松标准株树干植硅体碳储量最高的是广西岑溪115(31.58 g·株−1),最低的是湖南安化72(4.83 g·株−1),前者是后者的6.54倍。

    表 2  不同马尾松种源标准株树干植硅体碳储量的比较
    Table 2  Comparison of PhytOC stock in trunk of masson pine plant from different provenances
    种源号胸径/
    cm
    株高/
    m
    树干生物量/
    (kg·株−1)
    标准株植硅体
    碳储量/(g·株−1)
    河南桐柏21 17.117.076.48 5.61
    安徽太平32 21.817.0124.8516.03
    安徽屯溪33 22.519.0143.76 8.54
    浙江庆元54 26.119.1195.1113.64
    浙江淳安56 21.118.3122.59 7.88
    江西吉安63 20.817.4114.65 8.08
    湖南安化72 18.016.5 82.77 4.83
    湖南资兴74 26.718.2197.1013.01
    湖北远安81 21.518.8129.52 8.70
    湖北通山84 22.518.5141.3312.93
    福建邵武91 27.219.2212.8714.60
    福建永定95 28.418.9229.4411.79
    广东乳源10228.819.5241.7811.94
    广东信宜10525.119.3182.0520.23
    广西恭城11129.319.3247.9420.08
    广西岑溪11532.318.6295.3931.58
    贵州黄平12222.318.4137.8616.68
    贵州都匀12319.617.2100.83 5.45
    贵州黎平12424.119.0164.7312.55
    四川南江13120.216.3103.33 6.12
      说明:树干生物量根据模型计算得到[29]
    下载: 导出CSV 
    | 显示表格

    图1相关性分析发现:不同马尾松种源树干植硅体质量分数与植硅体封存有机碳质量分数无相关关系,而植硅体质量分数与植硅体碳质量分数呈极显著的正相(R2=0.751 3,P<0.01)。20个马尾松种源的标准株树干植硅体碳储量与其树干生物量(R2=0.607 3,P<0.01)或树干植硅体碳质量分数(R2=0.438 8,P<0.01)之间均呈极显著正相关,而马尾松标准株的叶片与树干植硅体质量分数、植硅体碳储量无相关关系(图2)。

    图 1  不同马尾松种源植硅体质量分数与植硅体封存有机碳质量分数(A)、植硅体碳质量分数(B)之间的相关性
    Figure 1  Correlation between phytolith contents and OC in phytoliths(A), PhytOC contents in dry matter(B) of masson pine trunks
    图 2  不同马尾松种源标准株植硅体碳储量与树干生物量(A)、标准株植硅体碳储量与植硅体碳质量分数(B)、标准株叶片植硅体质量分数与树干植硅体质量分数(C)或标准株叶片植硅体碳储量与标准株树干植硅体碳储量(D)之间相关性
    Figure 2  Correlation between PhytOC stock and trunk biomass (A), PhytOC stock and PhytOC contents in dry matter (B), phytolith contents in the leaves and phytolith contents in the trunks (C), PhytOC stock of the leaves and PhytOC stock of the trunks (D)

    基于上述结果,利用马尾松总有机碳质量分数、树干植硅体质量分数、植硅体封存有机碳质量分数等指标的均值对20个马尾松种源进行Q聚类分析(图3)。以图中m线为阈值可以将20个种源划分为4类,第1类为湖北通山84、广西恭城111、江西吉安63以及广西岑溪115,此类马尾松种源总有机碳质量分数为472.9~483.5 g·kg−1,植硅体封存有机碳质量分数最高,为204.5~210.2 g·kg−1,植硅体碳质量分数也整体相对较高,为0.070~0.107 g·kg−1,标准株马尾松树干植硅体碳储量为8.08~31.58 g·株−1,其中广西岑溪115(31.58 g·株−1)标准株树干植硅体碳储量最高;第2类马尾松种源包括河南桐柏21、湖南安化72、广东信宜105等7个种源,此类马尾松种源总有机碳质量分数为469.1~489.6 g·kg−1,树干植硅体封存有机碳质量分数为177.2~194.1 g·kg−1,植硅体碳质量分数为0.058~0.121 g·kg−1,标准株马尾松树干植硅体碳储量为4.83~20.23 g·株−1;第3类为浙江淳安56、贵州都匀123、福建永定95、安徽太平32等8个种源,这类马尾松种源总有机碳质量分数为467.6~485.9 g·kg−1,树干植硅体封存有机碳质量分数为147.6~172.4 g·kg−1,植硅体碳质量分数为0.049~0.128 g·kg−1,标准株树干植硅体碳储量变动为5.45~16.03 g·株−1;浙江庆元54为第4类马尾松种源,树干植硅体碳封存能力最差,总有机碳质量分数为484.0 g·kg−1,植硅体封存有机碳质量分数为126.8 g·kg−1,植硅体碳质量分数为0.070 g·kg−1,标准株树干植硅体碳储量为13.64 g·株−1

    图 3  参试种源的Q型聚类分析树形图
    Figure 3  Dendrogram of hierarchical cluster analysis for tested provenances

    植硅体的形成与植物富集硅的能力有关,因此关于植硅体的研究大多集中于高富集硅植物叶片(禾本科)以及林下土壤中;植硅体的形成还与植物体自身蒸腾作用有关,而植物蒸腾作用主要发生在植物叶片表面[630-31],对地上部分其他器官的植硅体碳汇研究相对较少。以马尾松(非禾本科)为代表的针叶林,自身植硅体的形成受到叶片(针叶)蒸腾作用和植物自身富硅能力的限制,植物植硅体质量分数相对较少。

    分析发现:马尾松树干植硅体质量分数与植硅体封存有机碳质量分数之间无相关性,与前人研究结果一致[2, 9, 20, 32],说明植硅体封存有机碳质量分数并不是由植硅体质量分数决定的,而可能与植硅体自身固碳能力和固碳效率有关;马尾松树干的植硅体质量分数和植硅体碳质量分数呈极显著的正相关(R2=0.751 3,P<0.01),这与中国亚热带重要树种植硅体碳研究结果[21]和苦竹Pleioblastus amarus林碳汇的研究结果[25]一致。植硅体碳质量分数还受到其他多种因素的影响,SONG等[23]对不同森林类型植硅体碳封存研究发现:植物植硅体碳质量分数与硅质量分数存在相关性;LI等[33]研究发现:植物植硅体碳质量分数还与植物吸收利用二氧化碳的速率相关。

    标准株马尾松树干植硅体碳储量是由树干生物量和植硅体碳质量分数相乘得到的,20个马尾松种源的标准株树干植硅体碳储量与其树干生物量(R2=0.607 3,P<0.01)或植硅体碳质量分数(R2=0.438 8,P<0.01)之间均存在极显著正相关,说明标准株马尾松树干植硅体碳储量在一定程度上有随自身树干生物量和植硅体碳质量分数的增加而呈增加的趋势。而马尾松标准株的叶片与树干植硅体质量分数、植硅体碳储量无相关关系,这可能是植硅体自身固碳能力和固碳效率不同导致的。

    本研究20个马尾松种源叶片植硅体碳质量分数范围为0.165~0.520 g·kg−1,明显高于马尾松树干植硅体碳质量分数(0.049~0.128 g·kg−1),叶片生物量范围为7.53~18.90 kg·株−1,树干生物量范围为76.48~295.39 kg·株−1,计算结果显示标准株叶片植硅体碳储量范围为1.67~9.22 g·株−1,标准株树干植硅体碳储量范围为4.83~31.58 g·株−1,可见树干巨大的生物量对植硅体碳储量的影响较大。

    植硅体碳储量是评价植物生态系统现存植硅体碳封存潜力的一个重要指标,其大小不仅与植物种类有关,而且还与植物的种源有关。5种林分的凋落物植硅体碳储量比较发现:最大的毛竹Phyllostachys edulis林植硅体碳储量是最小的杉木林植硅体碳储量的6.8倍[34];8种散生竹地上部分植硅体碳储量研究发现:不同竹种间差异显著,最大的淡竹Phyllostachys glauca植硅体碳储量是最小的高节竹Phyllostachys prominens植硅体碳储量的10.8倍[35];本研究马尾松标准株树干植硅体碳储量最高的是广西岑溪115,最低的是湖南安化72,前者是后者的6.5倍。上述结果说明:植硅体碳储量在不同树种和种源之间存在着巨大差异,因而对同一种源森林生态系统来说,有可能通过选择高植硅体碳储量的林木来大大增加其植硅体碳的封存量。

    20个马尾松种源树干的植硅体质量分数、植硅体封存有机碳质量分数以及植硅体碳质量分数都有着显著的差异(P<0.05),其中树干植硅体质量分数最高的是安徽太平32(0.845 g·kg−1),最低的是广东乳源102(0.305 g·kg-1);树干植硅体封存有机碳质量分数最高的是江西吉安63(210.2 g·kg−1),最低的是浙江庆元54(126.8 g·kg−1);而植硅体碳质量分数最高的是安徽太平32(0.128 g·kg−1),最低的是广东乳源(0.049 g·kg−1)。由于生物量的差异,标准株树干植硅体碳储量最高的是广西岑溪115(31.58 g·株−1)。综合聚类分析,湖北通山84、广西恭城111、江西吉安63以及广西岑溪115为植硅体碳汇能力较强的种源,浙江庆元54植硅体碳汇能力最差。

  • 图  1  杜仲、水稻、拟南芥、毛果杨和玉米CO-likes蛋白系统进化树

    Figure  1  Phylogenetic tree of CO-like proteins from E. ulmoides, O. sativa, A. thaliana, P. trichocarpa and Z. mays

    图  2  杜仲COLs基因结构分析

    Figure  2  Structural analysis of COLs in E. ulmoides

    图  3  EuCOLs蛋白保守基序分析

    Figure  3  Conservative motif analysis of EuCOL proteins

    图  4  EuCOLs启动子顺式作用元件分布

    Figure  4  Cis-elements distributed in the promoters of EuCOLs

    图  5  EuCOLs基因在杜仲叶片不同发育时期表达模式

    Figure  5  Expression patterns of EuCOLs genes at different development stages of E. ulmoides leaves

    图  6  EuCOLs基因在杜仲胶形成中的表达模式

    Figure  6  Expression pattern of EuCOL genes in the formation of eu-rubber         

    图  7  杜仲COL家族基因在叶片发育中的表达模式

    Figure  7  Expression patterns of E. ulmoides COL family genes during leaf development

    图  8  EuCOL7蛋白互作网络预测

    Figure  8  Prediction of interaction network between EuCOL7

    表  1  杜仲CO-like蛋白序列特征及亚细胞定位预测

    Table  1.   Sequence characteristics and predicted subcellular location of E. ulmoides CO-like proteins

    基因ID基因名染色体定位位置/bp
    CDS长度/bp蛋白质序列/个分子量/kDa等电点亚细胞定位
    EUC17024-RA EuCOL1 Super-Scaffold_183 1 758 965~1 761 661 1 128 375 41.70 5.10 细胞核
    EUC14665-RA EuCOL2 Super-Scaffold_127 1 395 219~1 398 047 1 287 428 47.26 5.25 细胞核
    EUC14912-RA EuCOL3 Super-Scaffold_121 1 876 239~1 890 694 1 410 469 52.65 5.95 细胞核
    EUC04726-RA EuCOL4 Super-Scaffold_3 2 229 604~2 240 203 1 155 384 42.06 5.85 细胞核
    EUC01228-RA EuCOL5 scaffold416_obj 336 319~340 482 1 038 345 39.01 6.47 细胞核
    EUC13984-RA EuCOL6 scaffold20_obj 133 259~134 581 972 323 35.50 5.52 细胞核
    EUC15205-RA EuCOL7 Super-Scaffold_275 13 124~15 540 948 315 35.21 5.59 细胞核
    EUC06371-RA EuCOL8 Super-Scaffold_162 322 024~324 298 1 347 448 49.49 5.71 细胞核
    下载: 导出CSV
  • [1] TOROK M, ETKIN L D. Two B or not two B? Overview of the rapidly expanding B-box family of proteins [J]. Differentiation, 2001, 67(3): 63 − 71.
    [2] ROBSON F, COSTA M M, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants [J]. Plant J, 2001, 28(6): 619 − 631.
    [3] YAMASHINO T, YAMAWAKI S, HAGUI E, et al. Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus(Ⅰ) verification of the flowering associated function of an FT homolog [J]. Biosci,Biotechnol,Biochem, 2013, 77(6): 747 − 753.
    [4] GRIFFITHS S, DUNFORD R P, COUPLAND G, et al. The evolution of CONSTANS-Like gene families in barley, rice, and Arabidopsis [J]. Plant Physiol, 2003, 131(4): 1855 − 1867.
    [5] CHIA T Y, MULLER A, JUNG C, et al. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus [J]. J Exp Bot, 2008, 59(10): 2735 − 2748.
    [6] ROBERT L S, ROBSON F, SHARPE A, et al. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus [J]. Plant Mol Biol, 1998, 37(5): 763 − 772.
    [7] NEMOTO Y, KISAKA M, TAKUICHI F, et al. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice [J]. Plant J, 2003, 36(1): 82 − 93.
    [8] HOLEFORS A, OPSETH L M, ROSNES A K R, et al. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce [J]. Plant Physiol Biochem, 2009, 47(2): 105 − 115.
    [9] ALMADA R, CABRERA N, CASARETTO J A, et al. VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds [J]. Plant Cell Rep, 2009, 28(8): 1193 − 1203.
    [10] SUÁREZ-LÓPEZ P, WHEATLEY K, ROBSON F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis [J]. Nature, 2001, 410(6832): 1116 − 1120.
    [11] SONG Y H, SMITH R W, TO B J, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering [J]. Science, 2012, 336(6084): 1045 − 1049.
    [12] LUCCIONI L, KRZYMUSKI M, SÁNCHEZ-LAMAS M, et al. CONSTANS delays Arabidopsis flowering under short days [J]. Plant J, 2019, 97(5): 923 − 932.
    [13] CHENG Xiaofei, WANG Zengyu. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana [J]. Plant J, 2005, 43(5): 758 − 768.
    [14] WU Weixun, ZHANG Yingxin, ZHANG Miao, et al. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1 [J]. Biochem Biophy Res Commun, 2018, 495(1): 1349 − 1355.
    [15] FU Jianxin, YANG Liwei, DAI Silan. Identification and characterization of the CONSTANS -like gene family in the short-day plant Chrysanthemum lavandulifolium [J]. Mol Genet Genomics, 2015, 290(3): 1039 − 1054.
    [16] LIU Jun, CHENG Zhanchao, LI Xiangyu, et al. Expression analysis and regulation network identification of the CONSTANS-Like gene family in moso bamboo (Phyllostachys edulis) under photoperiod treatments [J]. DNA Cell Biol, 2019, 38(7): 607 − 626.
    [17] XIAO Guohui, LI Bingjuan, CHEN Hongjuan, et al. Overexpression of PvCO1, a bamboo CONSTANS-LIKE gene, delays flowering by reducing expression of the FT gene in transgenic Arabidopsis [J]. BMC Plant Biol, 2018, 18(1): 232 − 247.
    [18] LI Juan, GAO Kai, YANG Xiaoyu, et al. Identification and characterization of the CONSTANS-like gene family and its expression profiling under light treatment in Populus [J]. Int J Biol Macromol, 2020, 161: 999 − 1010.
    [19] YAN Jiaping, MAO Dun, LIU Xiaomeng, et al. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba [J]. Plant Cell Rep, 2017, 36(9): 1387 − 1399.
    [20] OHMIYA A, ODA-YAMAMIZO C, KISHIMOTO S. Overexpression of CONSTANS-like 16 enhances chlorophyll accumulation in petunia corollas [J]. Plant Sci, 2019, 280: 90 − 96.
    [21] MIN J H, CHUNG J S, LEE K H, et al. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis [J]. J Integrative Plant Biol, 2015, 57(3): 313 − 324.
    [22] WANG Honggui, ZHANG Zenglin, LI Hongyu, et al. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis [J]. J Exp Bot, 2013, 64(4): 1017 − 1024.
    [23] 王淋. 杜仲橡胶合成相关酶基因的克隆及功能研究[D]. 长沙: 中南林业科技大学, 2014.

    WANG Lin. Cloning and Function Analysis of Related Genes Involved in Rubber Biosynthesis of Eucommia ulmoides[D]. Changsha: Central South University of Forestry and Technology, 2014.
    [24] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Mol Biol Evol, 2013, 30(12): 2725 − 2729.
    [25] LI Long, LIU Minhao, SHI Kan. Dynamic changes in metabolite accumulation and the transcriptome during leaf growth and development in Eucommia ulmoides[J/OL]. Int J Mol Sci, 2019, 20(16): 4030[2021-05-20]. doi: 10.3390/ijms20164030.
    [26] YE Jing, HAN Wenjing, FAN Ruisheng, et al. Integration of transcriptomes, small RNAs, and degradome sequencing to identify putative miRNAs and their targets related to eu-rubber biosynthesis in Eucommia ulmoides[J/OL]. Genes, 2019, 10(8): 623[2021-05-20]. doi: 10.3390/genes10080623.
    [27] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202.
    [28] YE Jing, JIN Cangfu, LI Nan, et al. Selection of suitable reference genes for qRT-PCR normalization under different experimental conditions in Eucommia ulmoides Oliv[J/OL]. Sci Rep, 2018, 8(1): 15043[2021-05-15]. doi: 10.1038/s41598-018-3342-w.
    [29] 杜红岩. 中国杜仲图志[M]. 北京: 中国林业出版社, 2014: 24 − 25.

    DU Hongyan. China Eucommia Pictorial[M]. Beijing: China Forestry Publishing House, 2014: 24 − 25.
    [30] 付建新, 王翊, 戴思兰. 高等植物CO基因研究进展[J]. 分子植物育种, 2010, 8(5): 1008 − 1016.

    FU Jianxin, WANG Yi, DAI Silan. Advanced research on CO genes in higher plants [J]. Mol Plant Breed, 2010, 8(5): 1008 − 1016.
    [31] 帅敏敏, 张启香, 黄有军. 光周期途径成花关键基因CONSTANS的进化机制[J]. 浙江农林大学学报, 2019, 36(1): 7 − 13.

    SHUAI Minmin, ZHANG Qixiang, HUANG Youjun. Evolution of the flowering time gene CONSTANS in a photoperiod pathway [J]. J Zhejiang A&F Univ, 2019, 36(1): 7 − 13.
    [32] DATTA S, HETTIARACHCHI G H C M, DENG Xingwang, et al. ArabidopsisCONSTANS-LIKE3 is a positive regulator of red light signaling and root growth [J]. Plant Cell, 2006, 18(1): 70 − 84.
    [33] HASSIDIM M, HARIR Y, YAKIR E, et al. Over-expression of CONSTANS-LIKE5 can induce flowering in short-day grown Arabidopsis [J]. Planta, 2009, 230(3): 481 − 491.
    [34] HAYAMA R, AGASHE B, LULEY E, et al. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis [J]. Plant Cell, 2007, 19(10): 2988 − 3000.
    [35] MARTIN J, STORGAARD M, ANDERSEN C H, et al. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog [J]. Plant Mol Biol, 2004, 56(2): 159 − 169.
    [36] BÖHLENIUS H, HUANG Tao, CHARBONNEL-CAMPAA L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees [J]. Science, 2006, 312(5776): 1040 − 1043.
    [37] TAKASE T, KAKIKUBO Y, NAKASONE A, et al. Characterization and transgenic study of CONSTANS-LIKE8(COL8) gene in Arabidopsis thaliana: expression of 35SCOL8 delays flowering under long-day conditions [J]. Plant Biotechnol, 2011, 28(5): 439 − 446.
    [38] ZHANG Zenglin, JI Ronghuan, LI Hongyu, et al. CONSTANS-LIKE7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis [J]. Mol Plant, 2014, 7(9): 1429 − 1440.
    [39] ZHANG Xiuming, ZHANG Li, JI Miaomiao, et al. Genome-wide identification and expression analysis of the B-box transcription factor gene family in grapevine (Vitis vinifera L. )[J/OL]. BMC Genomics, 2021, 22(1): 22[2021-05-15]. doi: 10.1186/s12864-021-07479-4.
    [40] XU Guixia, GUO Chunce, SHAN Hongyan, et al. Divergence of duplicate genes in exon-intron structure [J]. Proc Natl Acad Sci, 2012, 109(4): 1187 − 1192.
    [41] LIU Jiayou, YU Jianping, MCINTOSH L, et al. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering [J]. Plant Physiol, 2001, 125(4): 1821 − 1830.
    [42] KIM S J, MOON J H, LEE I, et al. Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil [J]. J Exp Bot, 2003, 54(389): 1879 − 1887.
    [43] CHAURASIA A K, PATIL H B, AZEEZ A, et al. Molecular characterization of CONSTANS-Like(COL) genes in banana (Musa acuminata L. AAA Group, cv. Grand Nain) [J]. Physiol Mol Biol Plants, 2016, 22(1): 1 − 15.
    [44] DING Jihua, BÖHLENIUS H, RÜHL M G, et al. GIGANTEA-like genes control seasonal growth cessation in Populus [J]. New Phytol, 2018, 218(4): 1491 − 1503.
    [45] KIM S K, YUN C H, LEE J H, et al. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice [J]. Planta, 2008, 228(2): 355 − 365.
    [46] SHENG Peike, WU Fuqing, TAN Junjie, et al. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice [J]. Plant Mol Biol, 2016, 92(1/2): 209 − 222.
    [47] TAN Junjie, JIN Mingna, WANG Jiachang, et al. OsCOL10, a CONSTANS-Like gene, functions as a flowering time repressor downstream of Ghd7 in rice [J]. Plant Cell Physiol, 2016, 57(4): 798 − 812.
    [48] CAMPOLI C, DROSSE B, SEARLE I, et al. Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS [J]. Plant J, 2012, 69(5): 868 − 880.
    [49] 朱利利, 杜庆鑫, 何凤, 等. 杜仲雄花芽2个发育时期转录组分析[J]. 植物研究, 2020, 40(2): 284 − 292.

    ZHU Lili, DU Qingxin, HE Feng. Sequencing analysis of transcriptome of male floral bud at two development stages in Eucommia ulmoides [J]. Plant Res, 2020, 40(2): 284 − 292.
    [50] MORITA R, SUGINO M, HATANAKA T, et al. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein expression protein is a positive regulator of starch synthesis in vegetative organs of rice [J]. Plant Physiol, 2015, 167(4): 1321 − 1331.
    [51] NAGAOKA S, TAKANO T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis [J]. J Exp Bot, 2003, 54(391): 2231 − 237.
    [52] YANG Yingjie, MA Chao, XU Yanjie, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellin biosynthesis [J]. Plant Cell, 2014, 26(5): 2038 − 2054.
    [53] TAKUHARA Y, KOBAYASHI M, SUZUKI S. Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants [J]. J Plant Physiol, 2011, 168(9): 967 − 975.
    [54] KOBAYASHI M, HORIUCHI H, FUJITA K, et al. Characterization of grape C-repeat-binding factor 2 and B-box-type zinc finger protein in transgenic Arabidopsis plants under stress conditions [J]. Mol Biol Rep, 2012, 39(8): 7933 − 7939.
    [55] ALABADÍ D, OYAMA T, YANOVSKY M J, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J]. Science, 2001, 293(5531): 880 − 883.
    [56] GREEN R M, TOBIN E M. The role of CCA1 and LHY in the plant circadian clock [J]. Dev Cell, 2002, 2(5): 516 − 518.
  • [1] 沈丹维, 朱婷, 李妹新, 江景勇, 时羽杰, 李小白, 曾为, 陈珍.  掌叶覆盆子多聚半乳糖醛酸酶基因家族鉴定及在果实发育中的作用 . 浙江农林大学学报, 2025, 42(2): 249-260. doi: 10.11833/j.issn.2095-0756.20240427
    [2] 陈梦瑶, 胡怡然, 郑志富, 潘天.  大豆IGT基因家族的全基因组鉴定及组织表达分析 . 浙江农林大学学报, 2025, 42(1): 64-73. doi: 10.11833/j.issn.2095-0756.20240354
    [3] 王书伟, 周明兵.  毛竹ICE基因家族的全基因组鉴定及低温胁迫下的表达模式分析 . 浙江农林大学学报, 2024, 41(3): 568-576. doi: 10.11833/j.issn.2095-0756.20230445
    [4] 郭玉婷, 杜长霞.  黄瓜R2R3-MYB亚家族鉴定及生物信息学分析 . 浙江农林大学学报, 2024, 41(2): 286-296. doi: 10.11833/j.issn.2095-0756.20230278
    [5] 周文玲, 魏洪玲, 李德文, 唐中华, 刘英, 解胜男, 田叙晨, 储启明.  植物生长调节剂对杜仲叶片主要次级代谢产物的影响 . 浙江农林大学学报, 2023, 40(5): 999-1007. doi: 10.11833/j.issn.2095-0756.20220705
    [6] 刘俊, 李龙, 陈玉龙, 陈随清.  杜仲WOX家族基因鉴定及在叶片发育中的表达 . 浙江农林大学学报, 2023, 40(1): 1-11. doi: 10.11833/j.issn.2095-0756.20210725
    [7] 王绍良, 张雯宇, 高志民, 周明兵, 杨克彬, 宋新章.  毛竹磷转运蛋白Ⅰ家族基因鉴定及表达模式 . 浙江农林大学学报, 2022, 39(3): 486-494. doi: 10.11833/j.issn.2095-0756.20210471
    [8] 赖梦霞, 杜长霞, 樊怀福.  黄瓜AQP基因家族的鉴定与生物信息学分析 . 浙江农林大学学报, 2022, 39(2): 318-328. doi: 10.11833/j.issn.2095-0756.20210361
    [9] 黄元城, 郭文磊, 王正加.  薄壳山核桃全基因组LBD基因家族的生物信息学分析 . 浙江农林大学学报, 2021, 38(3): 464-475. doi: 10.11833/j.issn.2095-0756.20200454
    [10] 陆丹迎, 程少禹, 章颖佳, 刘志高, 金梦婷, 董彬, 张寿洲, 彭豪, 戴梦怡, 王卓为, 赵宏波, 申亚梅.  景宁木兰PIF转录因子的生物信息学分析及极端遮阴条件下的表达模式 . 浙江农林大学学报, 2021, 38(3): 445-454. doi: 10.11833/j.issn.2095-0756.20200488
    [11] 蒋政勤, 周明兵, 郑浩, 季航, 徐芷馨.  毛竹Phyllostachys edulis retrotransposon 7(PHRE7)转座子的克隆与鉴定 . 浙江农林大学学报, 2019, 36(5): 917-927. doi: 10.11833/j.issn.2095-0756.2019.05.010
    [12] 程占超, 侯丹, 马艳军, 高健.  毛竹生长素反应因子基因的生物信息学分析及差异表达 . 浙江农林大学学报, 2017, 34(4): 574-580. doi: 10.11833/j.issn.2095-0756.2017.04.002
    [13] 刘艳艳, 朱芳明, 刘小珍, 张汉尧.  兔眼蓝莓组培红色突变株CHS基因的克隆与分析 . 浙江农林大学学报, 2017, 34(5): 864-870. doi: 10.11833/j.issn.2095-0756.2017.05.013
    [14] 侯传明, 郑雅文, 王正加, 徐英武.  山核桃MADS-like基因的克隆与分析 . 浙江农林大学学报, 2015, 32(1): 33-39. doi: 10.11833/j.issn.2095-0756.2015.01.005
    [15] 哀建国, 杜江丽, 周爱存, 金松恒, 宋新章.  双波长HPLC同时测定氮沉降处理下杜仲皮和叶中的5种成分 . 浙江农林大学学报, 2015, 32(1): 60-66. doi: 10.11833/j.issn.2095-0756.2015.01.009
    [16] 朱景乐, 杨超伟, 杜红岩, 李芳东, 孙志强, 杜兰英.  2个杜仲无性系光合能力比较 . 浙江农林大学学报, 2014, 31(5): 704-709. doi: 10.11833/j.issn.2095-0756.2014.05.007
    [17] 刘攀峰, 乌云塔娜, 杜兰英, 吴敏, 黄海燕, 杜红岩.  杜仲2-甲基-D-赤藓糖醇-2,4-环焦磷酸合酶基因全长cDNA克隆与序列分析 . 浙江农林大学学报, 2014, 31(3): 410-416. doi: 10.11833/j.issn.2095-0756.2014.03.013
    [18] 彭沙沙, 童再康, 黄华宏, 周厚君, 时剑, 林二培.  杉木纤维素合成酶类似蛋白基因ClCslD1的克隆及其生物信息学分析 . 浙江农林大学学报, 2012, 29(1): 1-6. doi: 10.11833/j.issn.2095-0756.2012.01.001
    [19] 吴家胜, 汪旭升.  数量性状位点(QTLs)内候选基因的生物信息学分析方法 . 浙江农林大学学报, 2008, 25(1): 104-108.
    [20] 高建社, 符军, 刘永红, 陈竹君.  氮磷肥配施效应对杜仲光合与蒸腾特性的影响 . 浙江农林大学学报, 2004, 21(3): 254-257.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210385

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/3/475

图(8) / 表(1)
计量
  • 文章访问数:  1929
  • HTML全文浏览量:  266
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 修回日期:  2021-12-09
  • 录用日期:  2021-12-14
  • 网络出版日期:  2022-05-23
  • 刊出日期:  2022-05-23

杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析

doi: 10.11833/j.issn.2095-0756.20210385
    基金项目:  河南省高等学校重点科研项目(22A360005);国家林业和草原局/北京市共建竹藤科学与技术重点实验室开放基金资助项目(ICBR-2020-05);国际竹藤中心安徽太平试验中心开放课题(1632021006-4);河南中医药大学博士科研启动基金项目(RSBSJJ2019-04)
    作者简介:

    刘俊(ORCID: 0000-0003-0468-5927),助理研究员,博士,从事植物分子生物学研究。E-mail: liujun_0325@163.com

  • 中图分类号: S718.4; Q754

摘要:   目的  揭示CONSTANS-like在杜仲Eucommia ulmoides基因组中的分布、结构特征及表达模式。  方法  利用生物信息学方法,对杜仲CONSTANS-like基因家族进行鉴定及理化性质、进化关系、基因结构、启动子元件和表达模式分析。  结果  杜仲基因组中共鉴定到8个EuCOLs基因,分别命名为EuCOL1~EuCOL8,氨基酸数目为315~469,理论等电点分布范围为5.10~6.47,分子量为35.21~52.65 kDa。亚细胞定位预测均定位在细胞核中,为亲水性蛋白,分布于8条染色体。系统进化分为2个亚家族(群组Ⅰ和群组 Ⅲ),分别包含2和6个EuCOLs蛋白,同一亚家族基序具有相似性。EuCOLs基因结构简单,启动子中含有多个光周期响应元件。表达模式分析显示:EuCOLs在杜仲叶片发育中表达水平相对较低,EuCOL7在杜仲胶形成中表达量最高,各家族成员表达特征存在差异。蛋白互作预测显示:EuCOL7可与多个光周期响应蛋白互作。  结论  杜仲CONSTANS-like基因家族含有典型的CCT和B-box结构域,可能参与叶片发育及杜仲胶的形成。图8表1参56

English Abstract

黄锦春, 万思琦, 陈扬, 等. 利用ISSR与SRAP分子标记分析金线莲种质资源遗传多样性[J]. 浙江农林大学学报, 2023, 40(1): 22-29. DOI: 10.11833/j.issn.2095-0756.20220473
引用本文: 刘俊, 李龙, 陈玉龙, 等. 杜仲CONSTANS-like全基因组鉴定、系统进化及表达模式分析[J]. 浙江农林大学学报, 2022, 39(3): 475-485. DOI: 10.11833/j.issn.2095-0756.20210385
HUANG Jinchun, WAN Siqi, CHEN Yang, et al. Genetic diversity of Anoectochilus roxburghii based on ISSR and SRAP molecular markers[J]. Journal of Zhejiang A&F University, 2023, 40(1): 22-29. DOI: 10.11833/j.issn.2095-0756.20220473
Citation: LIU Jun, LI Long, CHEN Yulong, et al. Genome-wide identification, system evolution and expression pattern analysis of CONSTANS-like in Eucommia ulmoides[J]. Journal of Zhejiang A&F University, 2022, 39(3): 475-485. DOI: 10.11833/j.issn.2095-0756.20210385
  • CONSTANS-like是植物中保守的一类锌指蛋白转录因子,N端含有1个或2个由2个半胱氨酸组成C-X2-C-X16-C-X2-C(C为半胱氨酸,X为可变氨基酸)介导蛋白互作的B-box结构域[1],C端包含1个由43个氨基酸组成参与蛋白核定位的CCT(CONSTANS、CONSTANS-like、TOC1)结构域[2-3]CO/CO-like(COL)基因家族已在多个物种中进行了报道,拟南芥Arabidopsis thaliana中鉴定到17个CONSTANS-like成员[2],水稻Oryza sativa中有17个[4],甜菜Beta vulgaris中有13个[5],大麦Hordeum vulgare中有9个[4],甘蓝型油菜Brassica napus中有4个[6],小麦Triticum aestivum中有3个[7],挪威云杉Picea abies中含有2个COL成员[8]

    研究表明:COL基因具有功能多样性,特别是在光响应介导的开花和生长调控方面[2, 4-5, 9]CO基因的表达和蛋白稳定受生物钟和光周期调节;长日照条件下,COFLOWERING LOCUS T (FT)启动子结合,诱导FT基因表达,促进拟南芥提前开花[10-11]CO通过调节TERMINAL FLOWER 1 (TFL1)的表达,抑制FT诱导开花[12]AtCOL9通过抑制CO基因表达,减缓FT转录,延迟开花[13]。在水稻中,超表达OsCOL15通过上调开花抑制因子Ghd7 (grain number, plant height and heading date 7),下调激活因子RID1 (rice indeterminate 1)、Ehd1 (early heading date 1)、Hd3a (heading date 3a)、FLT1 (FLOWERING LOCUS T1),导致开花延迟[14]。在长日照条件下,过表达甘菊Chrysanthemum lavandulifoliumClCOL5诱导转基因拟南芥提前开花[15]。大部分PheCOLs在毛竹Phyllostachys edulis叶片中表达量最高,具有显著的光周期响应模式[16];在早竹Ph. violascens中,PvCO1和PvCO2主要在叶片中表达[17]。毛果杨Populus trichocarpaPtCOLs优先在叶片中表达[18];银杏Ginkgo bilobaGbCO基因主要在叶片和茎尖表达[19]。超表达PhCOL16提高转基因矮牵牛Petunia corollas叶绿素含量,正调控叶绿素生物合成[20]COL不仅参与开花调控,在植物发育和逆境胁迫中也发挥重要作用。AtCOL4提高转基因植株盐和脱落酸 (abscisic acid, ABA)耐受性[21]AtCOL7促进拟南芥侧枝形成和下胚轴伸长[22]

    杜仲Eucommia ulmoides是单科、单属、单种植物,雌雄异株,广泛分布于陕西、河南、四川、贵州、云南等地,是中国特有的经济树种。因杜仲树皮、根、叶、花和果实中均含有大量的白色丝状杜仲橡胶,被誉为优质的天然橡胶树种[23]。COL蛋白在植物生长发育的多个方面发挥重要作用,具有重要的药用价值和橡胶用价值。杜仲COL基因家族系统进化及其在杜仲叶片生长发育和杜仲胶形成中的表达模式尚未报道。本研究以杜仲基因组数据为基础,利用生物信息学分析方法,对杜仲CONSTANS-like基因家族进行全基因组鉴定、理化性质和系统进化分析,初步鉴定EuCOLs基因在杜仲叶片生长发育及杜仲胶生物合成中的功能,为进一步探索EuCOLs基因的功能提供理论依据。

    • 杜仲种植于西北农林科技大学苗圃(陕西杨凌)。取生长正常,长势一致的2年生‘秦仲1号’‘Qinzhong 1’杜仲幼苗的叶芽(茎尖)、生长叶(3 cm长叶片)、幼叶(完全展开的新叶)、老叶(完全展开60 d叶片);取同一生长条件,与‘秦仲1号’相同发育时期的‘紫叶’杜仲E. ulmoides ‘Ziye’叶片,经液氮处理后冻存于−80 ℃冰箱,用于RNA提取。

    • 从杜仲基因组数据库Genome Warehouse (https://bigd.big.ac./gwh/Assembly/13/show)中下载COL蛋白候选序列,利用美国国家生物信息中心(NCBI)保守结构域搜索服务(CD Search)分析蛋白结构域,保留含有完整B-box和CCT结构域序列。通过在线软件ProtParam (http://web.expasy.org/protparam/)分析蛋白理化性质,使用Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)预测EuCOLs蛋白亚细胞定位,利用在线工具ExPASY (https://www.expasy.org/tools)分析EuCOLs氨基酸数量、分子量、理论等电点,通过Expasy (https://web.expasy.org/protscale/)软件分析蛋白的亲疏水性,利用SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.plpage=npsa_sopma.html)软件预测蛋白的二级结构。

    • 通过杜仲基因组数据库,查找EuCOLs基因在scaffolds上的位置以及scaffolds长度,使用DNAMAN软件进行EuCOLs蛋白序列比对,通过Clustal X1.83软件对杜仲、水稻、拟南芥、毛果杨和玉米Zea mays的COLs蛋白进行多序列比对,利用MEGA 6.0的邻接法(neighbor-joining),重复次数设置为1 000次[24],构建系统发育树。

    • 利用GSDS (http://gsds.gao-lab.org/index.php)软件分析EuCOLs基因结构,通过MEME (http://meme-suite.org/)对EuCOLs进行基序分析(参数是:any number of Repetitions (anr),maximum number of Motifs= 20,minimum width≥6,and maximum width≤50)。通过Clustal X 1.83比对和DNAsp5软件分析EuCOLs同源基因对,并计算非同义替换率(non-synonymous substitution rate, Ka)和同义替换率(synonymous substitution rate, Ks)。杜仲同源基因复制和分离的时间(t)由公式t=Ks/1.3×10−8计算[16]。利用Plant CARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/htmL/)软件对EuCOLs基因启动子(ATG)上游2 000 bp序列进行查找分离,进行启动子顺式作用元件分析。

    • 从NCBI的Short Read Arshive (SRA)数据库中下载‘秦仲1号’不同发育时期叶片(叶芽、初生叶、幼叶、老叶,版本号:SRP218063)[25]及不同胶含量杜仲品种(高产胶杜仲品种‘秦仲2号’‘Qinzhong 2’、低产胶杜仲品种‘小叶’‘Xiaoye’含量,版本号:SRP158357)[26]的转录组数据,利用1百万个映射上的碱基中映射到外显子的1千个碱基上的碱基个数(fragments per kilobase million,FPKM)值表示EuCOLs基因相对表达丰度(A),对该数值取对数(Log2A)进行统计分析,通过TBtools工具绘制基因表达图谱[27]

      利用Trizol (天根DP424)试剂提取‘紫叶’杜仲的叶芽(茎尖)、生长叶(3 cm长叶片)、嫩叶(完全展开的新叶)总RNA,反转录合成cDNA,利用Quant Studio 6 (Life Technologies公司,新加坡),All-in-One SYBR Premix EX TaqTM kit (Gene Copoeia公司,美国)进行实时荧光定量PCR (qRT-PCR)反应,10.0 μL反应体系: 2×mix 5.0 μL、正向引物/反向引物各0.25 μL、cDNA 2.0 μL、ddH2O 2.5 μL。反应程序:95 ℃预变性5 min,95 ℃变性10 s,60 ℃退火10 s,72 ℃延伸20 s,45个循环。内参基因为UBC E2[28],使用$2^{-\Delta\Delta{{C}}_{\rm{t}}} $法对3次生物学重复的数据进行分析。

    • 利用STRING软件(https://string-db.org/),选择拟南芥数据库进行序列比对,根据已知拟南芥COLs蛋白互作关系,预测EuCOL7互作蛋白,通过Cytoscape 3.7.0软件进行评估和预测[16]

    • 通过Genome Warehouse数据库,从杜仲基因组中共查找到8个EuCOLs基因,利用Pfam和NCBI的Conserved Domain Search软件,验证EuCOLs蛋白保守结构域。结果显示:8个EuCOLs蛋白均含有B-box和CCT结构域,分别命名为EuCOL1~EuCOL8。通过ExPASy工具,对EuCOL家族成员进行理化性质分析,EuCOL3蛋白序列最长,编码469个氨基酸,EuCOL7序列最短,编码315个氨基酸,分子量分布区域为35.21~52.65 kDa,等电点范围是5.10 (EuCOL1)~6.47 (EuCOL6),亚细胞定位预测结果显示:EuCOLs均定位在细胞核中(表1),属于疏水性蛋白,8个EuCOLs分布于8条scaffolds。

      表 1  杜仲CO-like蛋白序列特征及亚细胞定位预测

      Table 1.  Sequence characteristics and predicted subcellular location of E. ulmoides CO-like proteins

      基因ID基因名染色体定位位置/bp
      CDS长度/bp蛋白质序列/个分子量/kDa等电点亚细胞定位
      EUC17024-RA EuCOL1 Super-Scaffold_183 1 758 965~1 761 661 1 128 375 41.70 5.10 细胞核
      EUC14665-RA EuCOL2 Super-Scaffold_127 1 395 219~1 398 047 1 287 428 47.26 5.25 细胞核
      EUC14912-RA EuCOL3 Super-Scaffold_121 1 876 239~1 890 694 1 410 469 52.65 5.95 细胞核
      EUC04726-RA EuCOL4 Super-Scaffold_3 2 229 604~2 240 203 1 155 384 42.06 5.85 细胞核
      EUC01228-RA EuCOL5 scaffold416_obj 336 319~340 482 1 038 345 39.01 6.47 细胞核
      EUC13984-RA EuCOL6 scaffold20_obj 133 259~134 581 972 323 35.50 5.52 细胞核
      EUC15205-RA EuCOL7 Super-Scaffold_275 13 124~15 540 948 315 35.21 5.59 细胞核
      EUC06371-RA EuCOL8 Super-Scaffold_162 322 024~324 298 1 347 448 49.49 5.71 细胞核
    • 为了分析杜仲EuCOL基因家族的进化关系,将8个EuCOLs蛋白与17个拟南芥AtCOLs、水稻OsCOLs、ZmCOLs和14个毛果杨PtCOLs[18]导入MEGA 6.0软件,通过邻接法构建系统发育树,73个COLs蛋白分为3个亚家族(分别是群组 Ⅰ、群组 Ⅱ和群组 Ⅲ)(图1)。群组Ⅰ亚家族包含2个B-box和1个CCT结构域,由28个COLs蛋白组成,包含2个EuCOLs蛋白(EuCOL6和EuCOL7);群组Ⅱ亚家族含有1个B-box、1个CCT和1个分化的锌指结构域,所含COLs蛋白数量最少,有15个COLs蛋白,分别含有4个AtCOLs,3个PtCOLs蛋白和OsCOLs蛋白,5个ZmCOLs蛋白,不含EuCOLs蛋白;群组Ⅲ亚家族由1个B-box和1个CCT结构域组成,所含蛋白数量最多,包含30个COLs蛋白,有6个EuCOLs蛋白,进化关系显示杜仲与毛果杨亲缘关系最近。

      图  1  杜仲、水稻、拟南芥、毛果杨和玉米CO-likes蛋白系统进化树

      Figure 1.  Phylogenetic tree of CO-like proteins from E. ulmoides, O. sativa, A. thaliana, P. trichocarpa and Z. mays

    • 为了进一步分析EuCOLs基因的保守性和多样性,对EuCOLs基因结构及蛋白基序进行了分析,结果显示:EuCOLs基因结构较为简单(图2),EuCOL1和EuCOL6分别含有2个和3个外显子,4个EuCOLs基因含有4个外显子,EuCOL2和EuCOL3外显子数目最多,含有6个外显子。

      图  2  杜仲COLs基因结构分析

      Figure 2.  Structural analysis of COLs in E. ulmoides

      利用MEME在线软件,对EuCOLs家族进行保守基序分析,基序鉴定个数设置为20,分别命名为motif 1~motif 20。结果如图3所示:motif 1和motif 2为EuCOLs蛋白的特征性结构域,存在于所有EuCOLs蛋白中。只有EuCOL7含有1个B-box结构域,其余EuCOLs蛋白均由2个B-box组成,这与图2蛋白序列比对结果一致。同一亚家族EuCOLs基序具有高度相似性,其中motif 1包含1个典型的由C-X2-C-X16-C-X2-C编码的GATA锌指结构域。不同亚家族基序存在显著差异,例如:motif 7和motif 14只存在于群组Ⅲ亚家族,motif 12只在群组Ⅱ亚家族中存在。EuCOLs蛋白之间基序也有差异,只有EuCOL1和EuCOL4含有motif 5、motif 7和motif 9,motif 10仅存在于EuCOL2,推测基因功能差异可能与基序有关。

      图  3  EuCOLs蛋白保守基序分析

      Figure 3.  Conservative motif analysis of EuCOL proteins

    • 利用Plant CARE软件对EuCOLs起始密码子(ATG)上游2 000 bp序列进行顺式作用元件分析(图4)。EuCOLs启动子中不仅包含基本顺式作用元件,还存在3种类型元件。①胁迫响应元件,如干旱胁迫响应元件MBS;低温响应元件LTR;厌氧胁迫相关元件ARE等。②光响应元件,如Box 4、G-box、G-Box、GT1-motif、I-box、GATA-motif、TCCC-motif等。③激素响应元件,如赤霉素响应元件ABRE;生长素响应元件AuxRR-core;水杨酸响应元件CGTCA-motif等。推测EuCOLs可能参与杜仲生长发育、胁迫响应以及光周期调控。EuCOLs基因中光响应元件数量最多,共79个,包含18个Box 4,G-box和GT1-motif均有12个,暗示EuCOLs基因的转录可能受光周期调控。EuCOLs启动子区域含有16个ABRE和14个ARE元件(图4B),推测EuCOLs可能参与ABA调节和厌氧调控。

      图  4  EuCOLs启动子顺式作用元件分布

      Figure 4.  Cis-elements distributed in the promoters of EuCOLs

    • 为了探索EuCOLs基因在杜仲叶片发育中的功能,利用杜仲叶片不同发育时期的转录组数据,进行表达模式分析。图5显示:EuCOLs在杜仲叶片发育中转录水平较低,大部分基因FPKM值小于1,EuCOL6在杜仲叶片中不表达,暗示EuCOLs在杜仲叶片中发挥作用较小,EuCOL5在叶片中的转录水平相对较高,并且随着叶片发育,转录水平逐渐升高,推测EuCOL5在杜仲叶片中可能发挥正调控作用。

      图  5  EuCOLs基因在杜仲叶片不同发育时期表达模式

      Figure 5.  Expression patterns of EuCOLs genes at different development stages of E. ulmoides leaves

      利用高产胶杜仲品种‘秦仲2号’和低产胶杜仲品种‘小叶’成熟叶片转录组数据,检测EuCOLs基因的表达水平,结果如图6所示。大部分EuCOLs转录水平较低,只有EuCOL5和EuCOL7的表达量较高,EuCOL7在各样品中的FPKM值大于150,并且高胶含量叶片中的转录水平高于低胶含量叶片,推测EuCOL7在杜仲胶形成过程中发挥正调控作用,相反EuCOL5在‘小叶’中的转录水平高于‘秦仲2号’,暗示EuCOL5在杜仲胶形成中可能发挥负调控作用。

      图  6  EuCOLs基因在杜仲胶形成中的表达模式

      Figure 6.  Expression pattern of EuCOL genes in the formation of eu-rubber         

      为了验证EuCOLs基因在杜仲叶片发育中的表达模式 ,以‘紫叶’杜仲不同发育阶段的叶片为材料,通过qRT-PCR检测EuCOLs基因的表达水平。结果显示:EuCOLs在杜仲叶片中差异表达(图7),EuCOL1和EuCOL4在叶芽中表达量最高,随着叶片发育,表达水平逐渐降低,嫩叶中降为最低,暗示EuCOL1和EuCOL4在杜仲叶片发育的起始阶段发挥重要作用;相反EuCOL7随着叶片发育转录水平逐渐升高,嫩叶中的表达量是叶芽中的5.8倍,推测EuCOL7在杜仲成熟叶片中扮演重要角色。5个EuCOLs基因(EuCOL2、EuCOL3、EuCOL5、EuCOL6和EuCOL8)在幼叶中表达量最高,在叶片发育中,呈现先升高后降低的表达趋势。

      图  7  杜仲COL家族基因在叶片发育中的表达模式

      Figure 7.  Expression patterns of E. ulmoides COL family genes during leaf development

    • 表达模式分析显示:EuCOL7在杜仲叶片发育和杜仲胶形成中均具有较高表达量,暗示EuCOL7在叶片发育和杜仲胶形成中发挥重要作用。利用STRING软件,预测EuCOL7与其他蛋白质的互作关系。结果显示:EuCOL7可以与10个蛋白质发生相互作用(图8),其中3个属于BBX蛋白质家族,LHY、CCA和JAC家族各有1个,7个蛋白质(LNK2、LHY、CCA、RVE、COL、BBX25和BBX19)参与光周期响应。

      图  8  EuCOL7蛋白互作网络预测

      Figure 8.  Prediction of interaction network between EuCOL7

    • 杜仲具有重要的经济价值、药用价值和生态价值,广泛分布于中国27个省(市、自治区)[29]COL(CONSTANS-like)基因是植物光周期途径重要的调控基因。在营养生长阶段,COL基因在叶片中表达;光周期途径中,COL可将光信号和生物钟信号转变为开花信号,诱导成花基因FTLFY表达,促进植株开花[30-31]。本研究以杜仲基因组数据为基础,通过生物信息学方法,搜索杜仲CONSTANS-Like基因家族,共鉴定到8个EuCOLs基因,根据基因组注释位置,8个EuCOLs基因分别映射到8条特定的染色体上,表明EuCOLs基因在染色体上均匀分布。

      系统进化结果显示:EuCOLs分为2个亚家族(群组Ⅰ和群组Ⅲ),分别包含2和6个EuCOLs蛋白。在拟南芥中,AtCOAtCOL1~AtCOL5属于群组Ⅰ亚家族,含有2个B-box和1个CCT结构域,超表达AtCOL3延长转基因拟南芥开花时间[32],在短日照条件下,超表达AtCOL5可以促进FTSOC1基因表达,诱导拟南芥提前开花[33]。大麦HvCO1和Hd1基因与CO亲缘关系最近,可以通过激活HvFT1 诱导大麦开花[4],拟南芥co突变体过表达牵牛花Pharbitis nilPnCO基因可促进植物开花[34]。黑麦草Lolium perenneLpCO可以互补拟南芥co突变体晚花表型[35],毛果杨PtCO促使植株提前开花,也可调控植株的生长和芽的分化[36]。群组Ⅲ亚家族含有1个B-box和1个CCT结构域。在拟南芥中,AtCOL6~AtCOL8和AtCOL16属于群组Ⅲ亚家族,AtCOL7和AtCOL8在开花调控中是转录抑制因子,超表达AtCOL7和AtCOL8导致转基因拟南芥开花延迟[22, 37-38],推测EuCOLs可能也参与杜仲开花调控。

      蛋白序列比对结果显示:EuCOLs与拟南芥、毛果杨COLs蛋白结构域具有高度的相似性,N末端含有1~2个典型的B-box结构域,C端包含1个CCT结构域。B-box1和B-box2结构域保守氨基酸残基分布相似,B-box1结构域中的5个Cys残基和2个His残基比其他氨基酸残基更保守,B-box2结构域中的第1个组氨酸(His)残基被苏氨酸(Thr)取代或者丢失(EuCOL2和EuCOL7)。在葡萄Vitis vinifera中,VviBBX9和VviBBX10蛋白B-box2结构域中的第1个His残基被天冬酰胺(Asn)取代[39],暗示EuCOL2和EuCOL7可能具有特异的功能。

      外显子-内含子结构与基因系统进化存在密切关系,外显子-内含子的增加或减少有助于基因家族的扩展和多样化[40]。结构分析显示:EuCOLs基因含有2~6个外显子,EuCOL2含有6个外显子,其同源基因EuCOL8含有4个外显子,EuCOL3和EuCOL6分别含有6和3个外显子,而EuCOL5和EuCOL7分别含有4和2个外显子,推测EuCOLs在进化过程中可能存在外显子丢失现象,这与葡萄VviBBXs蛋白情况类似[39]。基序分析发现:motif 1和motif 2分别编码B-box和CCT结构域,存在于所有EuCOLs转录因子,同一亚家族EuCOLs蛋白motifs分布较为相似,不同亚族之间有差异。

      EuCOLs启动子中含有多个胁迫、激素和光周期响应元件,其中光响应元件数量最多,共有79个,暗示EuCOLs可能参与杜仲光周期调节。研究表明:COLs基因参与多种植物光周期开花调控,在矮牵牛中,PnCOPnCOL1具有显著的昼夜振荡节律,PnCO可以恢复拟南芥co突变体晚开花表型[41-42];大部分香蕉Musa acuminateMaCOLs基因表达量在白天达到峰值,夜晚降为最低[43]。杨树PttCO1和PttCO2黄昏时表达水平开始增加,黎明时达到峰值[44]。短日照条件下,OsCOL3通过抑制Hd3aRFT基因表达,导致水稻延迟开花[45]OsCOL13和OsCOL10在开花中发挥负调控作用[46-47];超表达HvCO1和ClCOL3促进开花[15, 48]EuCOLs在杜仲雄花芽苞叶原基分化中期和雄蕊原基分化初期差异表达,EuCOL7在雄蕊原基分化初期上调表达,EuCOL1下调表达[49],表明EuCOLs参与杜仲开花调控。

      大量研究表明:COLs不仅调控植物开花,还参与非生物胁迫以及生长发育等生物学过程[22, 50]。拟南芥STOCONSTNS结构相似,超表达STO提高转基因植株的耐盐性[51]。在菊花Chrysanthemum morifolium中,Cm-BBX24-RNAi转基因株系开花提前,冷冻和干旱胁迫耐受性降低,光周期和赤霉素生物合成相关基因上调表达,表明Cm-BBX24在菊花开花时间和非生物胁迫中发挥多重作用[52]。低温诱导葡萄叶片、茎和花中VvZFPL基因上调表达,超表达VvZFPL导致转基因拟南芥下胚轴伸长,莲座叶变小,叶绿素含量降低[53],提高转基因拟南芥低温、干旱和盐胁迫耐受性[54]AtCOL4基因表达受ABA、高盐和渗透胁迫的诱导,在种子萌发和子叶绿化过程中,atcol4突变体增加ABA和盐胁迫的敏感性[21]。表达模式分析显示:大部分EuCOLs在杜仲叶片发育中表达水平较低,各发育阶段转录水平无显著差异。EuCOL5转录水平相对较高,尤其在老叶中;EuCOL7在幼叶中表达量最高。在杜仲胶形成中,EuCOL5在‘小叶’中高量表达,EuCOL7在‘秦仲2号’中表达水平最高。qRT-PCR结果显示:EuCOL1和EuCOL4在叶片发育起始阶段表达量最高,EuCOL7随着叶片发育,转录水平逐渐增加,EuCOL2、EuCOL3、EuCOL5、EuCOL6和EuCOL8在叶片发育中,呈现先升高后降低的表达趋势,表明EuCOLs在杜仲叶片发育中具有功能差异性。

      蛋白互作网络结果显示:EuCOL7可以与10个蛋白质互作,10个蛋白质中有7个(LNK2、LHY、CCA、RVE、COL、BBX25和BBX19)参与光周期调控,推测EuCOL7参与杜仲光周期响应,具体互作蛋白还需实验验证。在毛竹中,PheCOLs具有显著的昼夜振荡表达模式,光照抑制大部分PheCOLs基因表达,黑暗诱导。酵母单杂交结果显示:PheCOL14可以与PheCOL3启动子结合[16]。在拟南芥中,LHY属于同源域蛋白超家族,参与昼夜调控,与APRR1/TOC1和TCP21/CHE的启动子结合,抑制其转录,并抑制CCA1基因表达[55-56]AtCOL5在维管组织中表达,超表达AtCOL5导致开花提前,然而AtCOL5缺失突变体并不影响开花时间,暗示AtCOL5可能与其他开花调控因子存在功能冗余现象[33]

参考文献 (56)

目录

/

返回文章
返回