Volume 38 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

DU Xue, LI Xiujuan, GUI Siqi, KAI Guoyin, SHAO Guoyuan, ZHOU Wei. Research progress of fungal diseases in Crocus sativus and identification of biocontrol bacteria[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1279-1288. doi: 10.11833/j.issn.2095-0756.20200809
Citation: DU Xue, LI Xiujuan, GUI Siqi, KAI Guoyin, SHAO Guoyuan, ZHOU Wei. Research progress of fungal diseases in Crocus sativus and identification of biocontrol bacteria[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1279-1288. doi: 10.11833/j.issn.2095-0756.20200809

Research progress of fungal diseases in Crocus sativus and identification of biocontrol bacteria

doi: 10.11833/j.issn.2095-0756.20200809
  • Received Date: 2021-01-04
  • Rev Recd Date: 2021-05-20
  • Available Online: 2021-12-08
  • Publish Date: 2021-12-08
  • Crocus sativus is a perennial herb with medicinal values such as promoting blood circulation and removing stasis, cooling blood and detoxification, anti-cancer and anti-oxidation. Due to vegetative propagation and successive cropping obstacle, the disease of C. sativus is aggravated day by day. And the corm rot disease caused by the fungus is the most common, which causes a sharp decline in C. sativus output, and seriously affects its industrial development. To conquer fungal disease is one of the effective ways to improve its yield and quality. In this study, the research progress on isolation and identification of soil fungal diseases, endophytic fungi and biocontrol bacteria of C. sativus is reviewed, and research prospect is analyzed. The follow-up research can be carried out from three directions. First, based on modern metagenome sequencing technology, the pathogen and antagonistic bacteria of the corm rot of C. sativus should be studied. Second, based on synthetic biology and fermentation engineering methods, heterologous and efficient biosynthesis of effective substances in C. sativus should be realized. The third is to create a new germplasm for detoxification of C. sativus to provide reliable and high quality provenance for production. This study can provide a reference for research on prevention and control of fungal diseases and the development and utilization of biological fertilizer. [Ch, 3 tab. 89 ref.]
  • [1] JIANG Chuchu, XIN Jingjing, XIA Shuquan, LUO Ping, SHAO Guoyuan, CUI Yongyi.  Isolation and identification of endophytic fungi from Cymbidium faberi ‘Hongxiangfei’ and their bacteriostatic effect in vitro . Journal of Zhejiang A&F University, 2023, 40(4): 783-791. doi: 10.11833/j.issn.2095-0756.20220578
    [2] ZHOU Shuideng, SUN Jian, JIANG Jianming, SHAO Jiangwei, DENG Huimin, SHAO Qingsong, WANG Zhi’an.  Effects of fertilization at different growth stages on yield and quality of Fritillaria thunbergii . Journal of Zhejiang A&F University, 2023, 40(4): 756-764. doi: 10.11833/j.issn.2095-0756.20220613
    [3] WANG Liyun, SUN Jian, CHEN Mengying, YAO Hui, ZHOU Shuideng, WANG Haige, WANG Pan, XU Kaijie, WANG Zhian.  Genetic diversity and quality characteristics of Angelica dahurica in different producing areas . Journal of Zhejiang A&F University, 2023, 40(1): 30-37. doi: 10.11833/j.issn.2095-0756.20220427
    [4] SONG Peng, LI Hui, JIANG Houlong, ZHAO Pengyu, LI Lixiang, ZHAO Biao, ZHANG Jun.  Effect of biochar-based fertilizer on root development, yield and quality of flue-cured tobacco in Chongqing tobacco growing area . Journal of Zhejiang A&F University, 2023, 40(6): 1232-1240. doi: 10.11833/j.issn.2095-0756.20230161
    [5] ZHU Yaning, YANG Guiying, ZHOU Qihuan, XIE Xiaojun, QI Mengwen, SHEN Yi, MO Jianchu.  Impact of microorganisms of Odontotermes formosanus fungus-combs on the growth of Termitomyces heimii . Journal of Zhejiang A&F University, 2022, 39(3): 598-606. doi: 10.11833/j.issn.2095-0756.20210478
    [6] WEI Jihua, LI Jiayi, LIU Hong, ZHANG Jianguo, LUO Hongmei, HE Caiyun.  Construction of endophytic strain bank of seabuckthorn nodule and an analysis of microbial diversity . Journal of Zhejiang A&F University, 2022, 39(2): 356-363. doi: 10.11833/j.issn.2095-0756.20210246
    [7] WU Jiening, GUI Siqi, CAO Jiajia, DU Xue, LI Junbo, LI Xiujuan, KAI Guoyin, ZHOU Wei.  Isolation and identification of pathogenic fungi of stem rot in Crocus sativus . Journal of Zhejiang A&F University, 2022, 39(5): 1080-1086. doi: 10.11833/j.issn.2095-0756.20210768
    [8] FENG Gelin, GAO Jing, YAN Shuxian, WANG Jing, LIANG Chenfei, QIN Hua, CHEN Junhui, XU Qiufang.  Characteristics and diversity of endophytic diazotrophs in three bamboo species . Journal of Zhejiang A&F University, 2021, 38(6): 1203-1212. doi: 10.11833/j.issn.2095-0756.20190586
    [9] ZHOU Yumiao, HE Ganghui, MA Shaofeng, SHAO Fanglei, FEI Yufan, HUANG Shunyin, ZHANG Haibo.  Ecological effects of microplastics contamination in soils . Journal of Zhejiang A&F University, 2021, 38(5): 1040-1049. doi: 10.11833/j.issn.2095-0756.20200729
    [10] ZHU Wankuan, XU Yuxing, WANG Zhichao, DU Apeng.  Soil-microbial stoichiometry of Eucalyptus urophylla × E. grandis plantation at different growth stages . Journal of Zhejiang A&F University, 2021, 38(4): 692-702. doi: 10.11833/j.issn.2095-0756.20200536
    [11] ZHAO Yahong, XU Cuixia, MA Ling, WANG Bin, WEI Saijun, LÜ Jiaxin, GAO Yan, ZHANG Rumin.  Effects of volatile components of three evergreen plants on air anion and microorganism . Journal of Zhejiang A&F University, 2020, 37(4): 654-663. doi: 10.11833/j.issn.2095-0756.20190521
    [12] BAI Rongrong, GAO Yanming, LI Jianshe, WANG Lan, ZHANG Xue, LIU Junli.  Mineral element absorption, distribution, and growth of nutrient film technique cultured tomatoes with varying nutrient solution ratios . Journal of Zhejiang A&F University, 2019, 36(6): 1217-1224. doi: 10.11833/j.issn.2095-0756.2019.06.020
    [13] YIN Cui, SUN Lixin, DONG Yan, CAO Zhen, ZHANG Yahong.  Growth, development, and quality of red globe grapes using root-zone soil heating in a plastic greenhouse . Journal of Zhejiang A&F University, 2016, 33(6): 1092-1097. doi: 10.11833/j.issn.2095-0756.2016.06.024
    [14] WU Genliang, ZHENG Jirong, LI Xuke.  Effect of different LED sources on the quality and yield of overwintering pepper in the greenhouse . Journal of Zhejiang A&F University, 2014, 31(2): 246-253. doi: 10.11833/j.issn.2095-0756.2014.02.013
    [15] HE Pei-yun, DING Gui-jie, CHEN Hong-hui.  Comparison of soil microorganisms and biochemical roles for first and second generation Pinus massoniana plantations . Journal of Zhejiang A&F University, 2012, 29(5): 703-709. doi: 10.11833/j.issn.2095-0756.2012.05.011
    [16] HE Sha-e, ZHANG Zhi-jun.  Extraction and purification of microbacterial total DNA from bamboo soil for PCR-DGGE analysis . Journal of Zhejiang A&F University, 2009, 26(2): 164-168.
    [17] ZUO Ji-lin, GONG Chun, WANG Jian-ping, ZHOU Wen-cai, WEN Qiang, XU Lin-chu.  Evaluation on quality of twenty-five clones of Camellia oleifera Group Gan . Journal of Zhejiang A&F University, 2008, 25(5): 624-629.
    [18] ZHANG Xin, ZHANG Li-qin, MA Liang-jin, LINHai-ping, MAO Sheng-feng, ZHANG Bing-xin.  Antagonistic activity of biocontrol bacterium ZJY-1 Brevibacillus brevis . Journal of Zhejiang A&F University, 2007, 24(1): 91-95.
    [19] MENG Ci-fu, JIANG Pei-kun, CAO Zhi-hong, XU Qiu-fang, ZHOU Guo-mo.  Boron nutrition and application to Myrica rubra . Journal of Zhejiang A&F University, 2006, 23(6): 684-688.
    [20] JIANG Ji-hong, CHEN Feng-mei, CAO Xiao-ying, SUN Yong, ZHU Hong-mei.  Biological characteristics of endophytic fungus Fusarium sp. GI024 from Ginkgo biloba . Journal of Zhejiang A&F University, 2004, 21(3): 299-302.
  • [1]
    RAHAIEE S, MOINI S, HASHEMI M, et al. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): a review [J]. J Food Sci Technol, 2015, 52(4): 1881 − 1888.
    [2]
    ZHOU Lin, YANG Liuyan, LI Qingzhu, et al. Cultivation, breeding and post-harvest management of Crocus sativus: recent progress [J]. Chin Agric Sci Bull, 2020, 36(13): 82 − 88.
    [3]
    QIAN Zhiyu. The experiment and clinical study on the hypolipidemic effect of crocin [J]. Chin Licensed Pharm, 2009, 6(2): 6 − 9.
    [4]
    HU Jiangning, YAO Dezhong, ZHANG Jiangsheng, et al. Research progress of Crocus sativus L. antitumor role [J]. J Anhui Agric Sci, 2014, 42(3): 699 − 701, 703.
    [5]
    PENG Haijun. Study on Biological Characteristics, In Vitro Propagation and Quality Evaluation of Crocus sativus L. [D]. Hangzhou: Zhejiang A&F University, 2014.
    [6]
    ZEKA K, MARRAZZO P, MICUCCI M, et al. Activity of antioxidants from Crocus sativus L. Petals: potential preventive effects towards cardiovascular system [J]. Antioxidants, 2020, 9(11): 1102. doi: 10.3390/antiox9111102.
    [7]
    NEGIN T, MOHSEN M, AMIRHOSSEIN F K, et al. Effects of saffron supplementation on oxidative/antioxidant status and severity of disease in ulcerative colitis patients: a randomized, double-blind, placebo-controlled study [J]. Phytother Res, 2021, 35(2): 946 − 953. doi: 10.1002/ptr.6848.
    [8]
    LIU Tao, TIAN Li, FU Xuefeng, et al. Saffron inhibits the proliferation of hepatocellular carcinoma via inducing cell apoptosis [J]. Panminerva Med, 2020, 62(1): 7 − 12.
    [9]
    LIU Bolin. Effect of crocin on the apoptosis of HPAC cells in human pancreatic carcinoma [J]. Mod Med J China, 2016, 18(7): 6 − 9.
    [10]
    LI Mengying, SI Mingdong, WEN Zishuai, et al. Mechanism of saffron in treating atherosclerosis based on network pharmacology method [J]. Chin J Clin Pharmacol Ther, 2020, 25(6): 649 − 657.
    [11]
    YU Ting, XING Yueyang, ZHU Guoqin. Anti-depression mechanism of croci stigma based on network pharmacology [J]. Acad J Shanghai Univ Tradit Med, 2020, 34(3): 70 − 75.
    [12]
    SHARMA N, NACHANE H, SASIKUMARAN A, et al. Saffron vs sertraline for depression in the elderly [J]. Psychiatry Res, 2020, 285: 112733. doi: 10.1016/j.psychres.2019.112733.
    [13]
    KOULAKIOTIS N S, PURHONEN P, GIKAS E, et al. Crocus-derived compounds alter the aggregation pathway of Alzheimer’s Disease: associated beta amyloid protein [J]. Sci Rep, 2020, 10(1): 18150. doi: 10.1038/s41598-020-74770-x.
    [14]
    SUN Chengtao, NILE S H, ZHANG Yiting, et al. Novel insight into utilization of flavonoid glycosides and biological properties of saffron (Crocus sativus L.) flower by-products [J]. J Agric Food Chem, 2020, 68(39): 10685 − 10696.
    [15]
    WU Lifang. Identification of Crocus sativus Corm Rot Pathogenic Fungi and Application on Screening Bacillus amyloliquefaciens C612[D]. Hangzhou: Zhejiang University, 2016.
    [16]
    CHEN Jian, SUN Xuchun, ZHAO Qingfang. Identification of pathogens causing root rot of Astragalus membranaceus [J]. Gansu Agric Sci Technol, 2020(10): 21 − 27.
    [17]
    ZHOU Shuang, BAI Jie, CHEN Fang. Identification and fungicides screening of saffrons rot disease pathogen [J]. J Sichuan Univ Nat Sci Ed, 2015, 52(4): 911 − 916.
    [18]
    CHAMKHI I, ABBAS Y, TARMOUN K, et al. Morphological and molecular characterization of arbuscular mycorrhizal fungal communities inhabiting the roots and the soil of saffron (Crocus sativus L.) under different agricultural management practices [J]. Arch Agron Soil Sci, 2019, 65(8): 1035 − 1048.
    [19]
    ZHANG Jing, WAN Lingxiao, LU Lizhen. Study on the control effect of microbial fertilizer on root rot of Panax ginseng in continuous cropping land [J]. Ginseng Res, 2019(4): 27 − 30.
    [20]
    RUBIO-MORAGA A, RÁMBLA J L, FERNANDEZ-de-CARMEN A, et al. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus [J]. Plant Mol Biol, 2014, 86(4/5): 555 − 569.
    [21]
    FRUSCIANTE S, DIRETTO G, BRUNO M, et al. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis [J]. Proc Natl Acad Sci USA, 2014, 111(33): 12246 − 12251.
    [22]
    TAN Hexin, CHEN Xianghui, LIANG Nan, et al. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast [J]. J Exp Bot, 2019, 70(18): 4819 − 4834.
    [23]
    YE Jun, ZHANG Xiang, ZHU Ruirui, et al. Research progress on biosynthetic pathway of crocin [J]. Chin Wild Plant Resour, 2020, 39(5): 38 − 44, 48.
    [24]
    LI Qing, YAN Xiaojian, ZHAO Kui, et al. Fast inspection of saffron on the spot based on cloud-connected portable near-infrared technology [J]. Spectrosc Spect Anal, 2020, 40(10): 3029 − 3037.
    [25]
    AMIRVARESI A, RASHIDI M, KAMYAR M, et al. Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection [J]. J Chromatogr, 2020, 1628: 461461. doi: 10.1016/j.chroma.2020.461461.
    [26]
    DAI Haochen, GAO Qixiang, HE Lili. Rapid determination of saffron grade and adulteration by thin-layer chromatography coupled with raman spectroscopy [J]. Food Anal Methods, 2020, 13(11): 2128 − 2137.
    [27]
    LI Shuailing, XING Bingcong, LIN Ding, et al. Rapid detection of saffron (Crocus sativus L.) adulterated with lotus stamens and corn stigmas by near-infrared spectroscopy and chemometrics [J]. Ind Crops Prod, 2020, 152: 112539. doi: 10.1016/j.indcrop.2020.112539.
    [28]
    CARDONE L, CASTRONUOVO D, PERNIOLA M, et al. The influence of soil physical and chemical properties on saffron (Crocus sativus L.) growth, yield and quality [J]. Agronomy, 2020, 10(8): 1154. doi: 10.3390/agronomy10081154.
    [29]
    SHAJARI M A, MOGHADDAM P R, GHORBANI R, et al. The possibility of improving saffron (Crocus sativus L.) flower and corm yield through the irrigation and soil texture managements [J]. Sci Hortic, 2020, 271: 109485. doi: 10.1016/j.scienta.2020.109485.
    [30]
    LU Zhonghua, ZHU Haiyan, MAO Bizeng, et al. Study on key technologies of saffron bulb reproduced in different places [J]. Mod Chin Med, 2020, 22(4): 573 − 576.
    [31]
    WANG Wumei. Studies on effector proteins of plant pathogenic fungi [J]. Agric Technol Equip, 2020, 368(8): 52 − 54.
    [32]
    WANG Hailing. Study on Technique System of Tissue Culture and Characteristics of Cultures from Style in Crocus sativus L. [D]. Suzhou: Soochow University, 2011.
    [33]
    ZOU Fenglian, WANG Zhiping, LU Gang. Studies on biological characteristics of Alternaria Alternata obtained from the corms of Crocus sativus L. [J]. J Zhejiang Univ Agric Life Sci, 2006, 32(2): 162 − 167.
    [34]
    ZHANG Guohui, ZHANG Xiping, ZHANG Nianfu, et al. Investigation and medicament prevention on stem rot disease of Crocus sativus [J]. J Kaili Univ, 2009, 27(3): 47 − 49.
    [35]
    WANI Z A, AHMAD T, NALLI Y, et al. Porostereum sp., associated with saffron (Crocus sativus L.), is a latent pathogen capable of producing phytotoxic chlorinated aromatic compounds [J]. Curr Microbiol, 2018, 75(7): 880 − 887.
    [36]
    ZHANG Tong, HUANG Chao, DENG Changping, et al. First report of corm rot on saffron caused by Penicillium solitum in China [J]. Plant Dis, 2020, 104(2): 579. doi: 10.1094/PDIS-09-19-1927-PDN.
    [37]
    YAO Tianming, FU Jianzeng, NAN Jianjun, et al. Study on Pinellia ternata rot caused by combined infection of Fusarium oxysporum and Erwiniella [J]. Gansu Agric Sci Technol, 2020(7): 54 − 58.
    [38]
    KALHA C S, GUPTA V, GUPTA D, et al. First report of sclerotial rot of saffron caused by Sclerotium rolfsii in India [J]. Plant Dis, 2007, 91(9): 1203. doi: 10.1094/PDIS-91-9-1203B.
    [39]
    KARUNASINGHE T G, MAHARACHCHIKUMBURA S S N, VELAZHAHAN R, et al. Antagonistic activity of endophytic and rhizosphere fungi isolated from sea purslane (Sesuvium portulacastrum) against pythium damping-off of cucumber [J]. Plant Dis, 2020, 104(8): 2158 − 2167.
    [40]
    HASSANI M A, DURÁN P, HACQUARD S. Microbial interactions within the plant holobiont [J]. Microbiome, 2018, 6: 58. doi: 10.1186/s40168-018-0445-0.
    [41]
    GUO Longmei, GAO Linyi, SUN Wenjing, et al. Research progress of endophytic fungi of medicinal plants [J]. J Anhui Agric Sci, 2019, 47(9): 11 − 13, 18.
    [44]
    HAN Xiaomin, LI Fengqin. Advances in the polyphasic classification and identification method of Aspergillus niger isolates [J]. Food Ferment Ind, 2020, 46(23): 279 − 285.
    [45]
    LU Dandan. Isolation, Identification of Endophytic Fungi from Loranthus tanakae and Study on Secondary Metabolites of Alternaria alternate[D]. Taiyuan: Shanxi Medical University, 2020.
    [46]
    GOU Fancheng, HOU Yiling, SONG Bo, et al. The application of rDNA-ITS sequence analysis method and traditional classification method in the classification of fungi [J]. J China West Norm Univ Nat Sci, 2017, 38(4): 382 − 386.
    [47]
    YANG Mingjun, ZHANG Chen, YAN Zuhua, et al. Isolation and activity evaluation of endophytic fungi from Glycyrrhiza uralensis [J]. China Tradit Herb Drugs, 2020, 51(17): 4538 − 4546.
    [48]
    LIU Huibo, CHEN Yuchan, LI Saini, et al. Study on the secondary metabolites from endophytic fungus Diaporthe lithocarpus A740 in Morinda offcinalis and the cytotoxic activities [J]. J Chin Med Mater, 2020, 43(10): 2439 − 2444.
    [49]
    LAN Yongzhe, LI Qirui, HUANG Jin, et al. Diversity, antibacterial and antioxidant activities of endophytic fungi from Phyllanthus emblica in Guanling, Guizhou [J]. J Guizhou Med Univ, 2020, 45(9): 1009 − 1014.
    [50]
    YANG Tao, ZHAO Jiang, YANG Hui, et al. Study on the isolation of strong secretory Lecanicillium psalliotae and its control of rotten disease of Fritillaria przewalskii [J]. J Chin Med Mater, 2020, 43(11): 2624 − 2630.
    [51]
    ZHOU Ying, WU Lingshang, CHEN Qiuyan, et al. Screening of endophytic fungi against southern blight disease pathogen-Sclerotium delphinii in Dendrobium catenatum [J]. China J Chin Mater Med, 2020, 45(22): 5459 − 5464.
    [52]
    WANI Z A, KUMAR A, SULTAN P, et al. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant [J]. Sci Rep, 2017, 7(1): 8598. doi: 10.1038/s41598-017-08974-z.
    [53]
    ZHENG Chengjian, LI Lin, ZOU Jingping, et al. Identification of a quinazoline alkaloid produced by Penicillium vinaceum, an endophytic fungus from Crocus sativus [J]. Pharm Biol, 2012, 50(2): 129 − 133.
    [54]
    WANI Z A, MIRZA D N, ARORA P, et al. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: an insight into the microbiome of Crocus sativus Linn. [J]. Fungal Biol, 2016, 120(12): 1509 − 1524.
    [55]
    WEN Lu, XU Yuan, WEI Qiqiu, et al. Modeling and optimum extraction of multiple bioactive exopolysaccharide from an endophytic fungus of Crocus sativus L. [J]. Pharmacognosy Mag, 2018, 14(53): 36 − 43.
    [56]
    ROMERO D, de VICENTE A, RAKOTOALY R H, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca [J]. Mol Plant Microbe Interact, 2007, 20(4): 430 − 440.
    [57]
    ZHOU Yangzi. Studies on the Biocontrol Effects and Mechanism of Lipopolypeptide Producing Strain QHZ-3 on Black Scurf Disease of Potato[D]. Lanzhou: Gansu Agricultural University, 2020.
    [58]
    YE Minshuo, MA Yan, HUANG Youjun. The control of pepper blight by Bacillus spp.: research progress [J]. Chin Agric Sci Bull, 2020, 36(15): 123 − 129.
    [59]
    YAO Yaqian, CHENG Nana, LI Peigen, et al. Isolation and identification of Bacillus amyloliquefaciens T-6 and its potential of resisting disease and promoting growth [J]. Biotechnol Bullet, 2020, 36(9): 202 − 210.
    [60]
    KONG H G, KIM N H, LEE S Y, et al. Impact of a recombinant biocontrol bacterium, Pseudomonas fluorescens pc78, on microbial community in tomato rhizosphere [J]. Plant Pathol J, 2016, 32(2): 136 − 144.
    [61]
    SOOD M, KAPOOR D, KUMAR V, et al. Trichoderma: the “secrets”of a multitalented biocontrol agent [J]. Plants, 2020, 9(6): E762. doi: 10.3390/plants9060762.
    [62]
    TIAN Lei, SHI Shaohua, JI Li, et al. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings [J]. Int Microbiol, 2018, 21: 153 − 162.
    [63]
    TAO Zhongyun, XIE Guoxiong, ZENG Hongxing, et al. Paenibacillus alvei ZJU20111 as a biocontrol agent against corm rot of saffron caused by Fusarium oxysporum [J]. Acta Phytophylacica Sin, 2013, 40(3): 285 − 286.
    [64]
    SCHOINA C, STRINGLIS I A, PANTELIDES I S, et al. Evaluation of application methods and biocontrol efficacy of Paenibacillus alvei strain K-165, against the cotton black root rot pathogen Thielaviopsis basicola [J]. Biol Control, 2011, 58(1): 68 − 73.
    [65]
    KOUR R, AMBAROAR S, VAKHLU J. Plant growth promoting bacteria associated with corm of Crocus sativus during three growth stages [J]. Lett Appl Microbiol, 2018, 67(5): 458 − 464.
    [66]
    GUPTA V, KUMAR K, FATIMA K, et al. Role of biocontrol agents in management of corm rot of saffron caused by Fusarium oxysporum [J]. Agronomy, 2020, 10(9): 1398. doi: 10.3390/agronomy10091398.
    [67]
    GUPTA R, VAKHLU J. Native Bacillus amyloliquefaciens W2 as a potential biocontrol for Fusarium oxysporum R1 causing corm rot of Crocus sativus [J]. Eur J Plant Pathol, 2015, 143: 123 − 131.
    [68]
    ANISHA C, RADHAKRISHNAN E K. Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum [J]. Appl Biochem Biotechnol, 2015, 175: 3458 − 3467.
    [69]
    HAN J H, PARK G C, KIM K S. Antagonistic evaluation of Chromobacterium sp. JH7 for biological control of ginseng root rot caused by Cylindrocarpon destructans [J]. Mycobiology, 2017, 45(4): 370 − 378.
    [70]
    JIANG Yun, CHEN Lin, TANG Hao, et al. Development of Bacillus amyloliquefaciens FG14 WP and field control of ginseng rust rot [J]. J Jilin Agric Univ, 2020, 42(4): 380 − 385.
    [71]
    ZHENG Mingzi, YE Haijun, YU Yiyang, et al. Effect of a biocontrol agents combination “Ning Dun” on disease prevention and growth promoting of Fritillaria thunbergii [J]. Mod Chin Med, 2020, 22(11): 1871 − 1874.
    [72]
    HE Dongmei, LIN Chanchun, YAN Zhuyun, et al. Isolation and identification of antagonistic endophytic actinomycetes against root rot disease in Ligusticum chuanxiong [J]. J Chin Med Mater, 2016, 39(2): 265 − 269.
    [73]
    SONG M, YUN H Y, KIM Y H. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum [J]. J Ginseng Res, 2014, 38(2): 136 − 145.
    [74]
    GAO Fen, ZHAO Xiaoxia, YAN Huan, et al. Screening and identification of antagonistic Bacillus against Astragalus membranaceus root rot and its effect on microorganism community in root zone soil [J]. China J Chin Mater Med, 2019, 44(18): 3942 − 3947.
    [75]
    VINAYARANI G, PRAKASH H S. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani [J]. World J Microbiol Biotechnol, 2018, 34: 49. doi: 10.1007/s11274-018-2431-x.
    [76]
    WANG Qiuxia, SUN Hai, XU Chenglu, et al. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng [J]. Appl Soil Ecol, 2019, 138: 245 − 252.
    [77]
    ZHOU Lin, YANG Liuyan, CAI Youming, et al. Diversity analysis of microorganism in rhizosphere soil and bulbs of chongming saffron (Crocus sativus L.) [J]. J Nucl Agric Sci, 2020, 34(11): 2452 − 2459.
    [78]
    QIU Fei, ZENG Junlan, WANG Jing, et al. Functional genomics analysis reveals two novel genes required for littorine biosynthesis [J]. New Phytol, 2020, 225(5): 1906 − 1914.
    [79]
    SRINIVASAN P, SMOLKE C. Biosynthesis of medicinal tropane alkaloids in yeast [J]. Nature, 2020, 585: 614 − 619.
    [80]
    PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496: 528 − 532.
    [81]
    CHEN Xianghui. Mining and Functional Study of Genes Involved in Crocins Biosynthesis or Stigma Development in Crocus sativus L. [D]. Shanghai: The Second Military Medical University, 2018.
    [82]
    QIAN Xiaodong, SUN Youping, ZHOU Guifen, et al. Single-molecule real-time transcript sequencing identified flowering regulatory genes in Crocus sativus [J]. BMC Genomics, 2019, 20(1): 857. doi: 10.1186/s12864-019-6200-5.
    [83]
    WU Dan, SONG Aiping, SHI Yadong, et al. Virus elimination and quality evaluation of virus-free seedlings in Chrysanthemum morifolium‘Chuju’ [J]. J Nanjing Agric Univ, 2017, 40(6): 983 − 992.
    [84]
    WANG Baoxia, QI Yonghong, XIAO Yayin, et al. Virus-free culture and virus detection of stem tip of Pinellia ternata [J]. Plant Physiol J, 2018, 54(12): 1813 − 1819.
    [85]
    ZHANG Xiaoli, LI Ping, ZHOU Caiyun, et al. Growth characters, yield and quality of virus-free Rehmannia glutinosa seedlings in the field [J]. Chin Bull Bot, 2017, 52(4): 474 − 479.
    [86]
    CHIB S, THANGARAJ A, KAUL S, et al. Development of a system for efficient callus production, somatic embryogenesis and gene editing using CRISPR/Cas9 in saffron (Crocus sativus L.) [J]. Plant Methods, 2020, 16: 47. doi: 10.1186/s13007-020-00589-2.
    [87]
    WANG Kaili, DENG Quanqing, CHEN Jianwen, et al. Physiological and molecular mechanisms governing the effect of virus-free chewing cane seedlings on yield and quality [J]. Sci Rep, 2020, 10: 10306. doi: 10.1038/s41598-020-67344-4.
    [88]
    YAN Zhaoping, LI Yongle, ZHAO Jun, et al. The initial research on isolation and metabolism of endophytic fungus from Crocus sativus L. [J]. J Shanghai Norm Univ Nat Sci, 2010, 39(1): 71 − 77.
    [89]
    CASER M, DEMASI S, VICTORINO Í M M, et al. Arbuscular mycorrhizal fungi modulate the crop performance and metabolic profile of saffron in soilless cultivation [J]. Agronomy, 2019, 9(5): 232. doi: 10.3390/agronomy9050232.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(3)

Article views(1306) PDF downloads(57) Cited by()

Related
Proportional views

Research progress of fungal diseases in Crocus sativus and identification of biocontrol bacteria

doi: 10.11833/j.issn.2095-0756.20200809

Abstract: Crocus sativus is a perennial herb with medicinal values such as promoting blood circulation and removing stasis, cooling blood and detoxification, anti-cancer and anti-oxidation. Due to vegetative propagation and successive cropping obstacle, the disease of C. sativus is aggravated day by day. And the corm rot disease caused by the fungus is the most common, which causes a sharp decline in C. sativus output, and seriously affects its industrial development. To conquer fungal disease is one of the effective ways to improve its yield and quality. In this study, the research progress on isolation and identification of soil fungal diseases, endophytic fungi and biocontrol bacteria of C. sativus is reviewed, and research prospect is analyzed. The follow-up research can be carried out from three directions. First, based on modern metagenome sequencing technology, the pathogen and antagonistic bacteria of the corm rot of C. sativus should be studied. Second, based on synthetic biology and fermentation engineering methods, heterologous and efficient biosynthesis of effective substances in C. sativus should be realized. The third is to create a new germplasm for detoxification of C. sativus to provide reliable and high quality provenance for production. This study can provide a reference for research on prevention and control of fungal diseases and the development and utilization of biological fertilizer. [Ch, 3 tab. 89 ref.]

DU Xue, LI Xiujuan, GUI Siqi, KAI Guoyin, SHAO Guoyuan, ZHOU Wei. Research progress of fungal diseases in Crocus sativus and identification of biocontrol bacteria[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1279-1288. doi: 10.11833/j.issn.2095-0756.20200809
Citation: DU Xue, LI Xiujuan, GUI Siqi, KAI Guoyin, SHAO Guoyuan, ZHOU Wei. Research progress of fungal diseases in Crocus sativus and identification of biocontrol bacteria[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1279-1288. doi: 10.11833/j.issn.2095-0756.20200809
  • 西红花Crocus sativus为鸢尾科Iridaceae番红花属Crocus多年生草本植物,又称番红花、藏红花,以干燥柱头入药,属药食同源中药材,被历代医家所推崇,被誉为“红色金子”,2018年被浙江省人民政府认定为新“浙八味”之一。西红花原产于伊朗、希腊、印度、西班牙、意大利、摩洛哥等地[1],喜冷凉、耐寒、不耐涝,适合在疏松肥沃、腐殖质丰富、排水良好的沙质土壤种植[2],在中国山东、江苏、北京、河南等20多个省、市都有一定的种植面积。大量研究发现:西红花具有调血脂[3]、抗肿瘤[4]、抗氧化[5-7]、抗癌[8-9]、防治动脉粥样硬化[10]、抗抑郁[11-12]、预防阿尔茨海默症[13]等多种药用活性。除柱头外,副产物花瓣也具有抗氧化的药用活性[14]。但是西红花是三倍体植物,只能通过无性繁殖繁育新球茎,极易积累病害;同时由于西红花种植面积不断扩大,球茎腐烂病逐年加重,大量球茎在田间生长期和收获储藏期腐烂,球茎减产严重,西红花的产量与品质受到影响[15-19]。目前,围绕西红花的研究主要集中于以下方面:①西红花苷、西红花酸等主要药用成分药理活性研究,进一步开发西红花潜在的药用价值[3, 14]。②西红花苷生物合成途径的解析,如对西红花苷生物合成途径相关合成酶基因进行挖掘和功能解析[20-22]。③西红花价格昂贵、产量低,市面上西红花以次充好、品质参差不齐,因此精准、高效地对西红花的真伪进行鉴定显得尤为重要[23-27]。④优化西红花栽培管理模式和施肥方式,以提高西红花的品质,降低病害发生率[28-30]。⑤西红花球茎腐烂病致病菌的分离与鉴定[15]。球茎腐烂病是困扰西红花产业发展的主要问题,致病菌的分离鉴定以及相应杀菌剂或生物农药的开发利用能为产业良性发展提供保障[15]。本研究围绕西红花土壤真菌性病害、西红花内生真菌、西红花真菌性病害生防菌的挖掘鉴定等展开综述,为全面了解西红花真菌性病害、防治现状以及产业化发展提供理论依据。

  • 细菌、真菌、病毒等微生物都能引起西红花病害,以真菌引起的病害最为常见,造成的经济损失也最为严重[31],西红花球茎腐烂病成为当前制约西红花产业发展的主要因素。球茎腐烂病是球茎生长期间的主要病害,常见于连作田及排水差的田块,通常由真菌引起,每年有30%以上的种植面积遭受病害[15],严重影响球茎、柱头的产量和品质。

    西红花球茎腐烂病主要有黑腐病和白腐病2种,其中黑腐病主要发生在球茎休眠期,白腐病主要发生在球茎大田生长期[32]。邹凤莲等[33]从西红花种球中分离到1株链格孢菌Alternaria alternata,回接试验发现其可引起西红花球茎腐烂,并与青霉菌一起感染球茎;相比感染单种真菌病害,腐烂更加严重。表明西红花球茎腐烂病可能是多种致病菌共同作用的结果。张国辉等[34]通过组织分离法从感病球茎中分离得到了2种致病真菌,分别为炭疽菌Anthracnose sp. 和尖孢镰刀菌Fusarium oxysporum;回接试验发现:这2种真菌共同感染西红花球茎从而引起腐烂病的发生。王海玲[32]从腐烂球茎中分离获得巴西曲霉Aspergillus brasiliensis、尖孢镰刀菌F. oxysporum和桔青霉菌Penicillium citrinum等3种致病菌,但是这3种菌复合接种是否引起球茎腐烂,目前尚无明确的报道。WANI等[35]从健康球茎中分离出内生真菌红棕孔韧革菌CSE26菌株Porostereum sp.,经球茎回接及田间植株回接试验,发现该菌产生的水解酶和氯代甲氧苯基代谢物可引起西红花球茎腐烂,但病症较轻,表明红棕孔韧革菌是一种致病性较弱的病原菌。吴李芳[15]分离得到了尖孢镰刀菌和腐皮镰刀菌F. solani,通过回接试验证明:此2种真菌是新发现的能引起西红花球茎腐烂的致病真菌。ZHANG等[36]从浙江省建德市西红花专业合作社采样,并从黑腐病的球茎中分离鉴定了1种新的能引起西红花球茎腐烂的离生青霉菌菌株P. solitum。迄今为止,已公开报道的引起西红花球茎腐烂的致病菌包括曲霉属Aspergillus sp.、镰刀菌属Fusarium sp.、青霉菌属Penicillium sp.、炭疽菌属Anthracnose sp. 和链格孢菌属Alternaria sp.,其中镰刀菌属还会引起其他药用植物如黄芪Astragalus membranaceus[16]、人参Panax ginseng[19]、半夏Pinellia ternata[37]等根茎的腐烂(表1)。因此,防治镰刀菌属真菌病害可减少西红花田间病害的发生,在生产上具有实际应用价值。

    菌株类型分离部位参考文献菌株类型分离部位参考文献
    尖孢镰刀菌 Fusarium oxysporum腐烂球茎[15]炭疽菌 Anthracnose sp.腐烂球茎[34]
    腐皮镰刀菌 F. solani腐烂球茎[15]红棕孔韧革菌 Porostereum sp.健康球茎[35]
    巴西曲霉 Aspergillus brasiliensis腐烂球茎[32]离生青霉菌 P. solitum腐烂球茎[36]
    桔青霉菌 Penicillium citrinum腐烂球茎[32]齐整小核菌 Sclerotium rolfsii腐烂球茎[38]
    链格孢菌 Alernaria alternata健康球茎[33]

    Table 1.  Summary of pathomycete isolation from rotting bulbs of C. sativus

  • 植物内生真菌是指广泛寄生于植物组织或细胞内部,但不会引起宿主感染的真菌[39],通常与宿主形成互惠的共生关系[40]

  • 研究表明:同一物种内生真菌的种类和数量会受品种、生长条件、取材的组织部位等因素影响,并常存在显著差异[41]。因此,分离西红花内生真菌需要对植株的不同组织部位(如根、茎、叶等)分别取材。目前,西红花内生真菌的分离主要采用组织分离法,即分别将不同部位的西红花组织切成小块彻底消毒后,将其置于马铃薯葡萄糖培养基上25 ℃培养,待其生长出菌落后挑其边缘进行纯化,已纯化的内生真菌还需要进行形态学鉴定和分子水平鉴定。西红花内生真菌形态学鉴定主要包括真菌的宏观和微观特征。宏观特征如菌落正反面颜色、菌落质地(絮状、毛毡状、质密、疏松)、菌落生长速度、菌落表面是否产生液滴等[42-44];微观特征如菌丝形状、孢子形状(卵形、倒棒形、倒梨形、卵圆形、椭圆形等)、有无隔膜、有无孢子等[45]。西红花内生真菌分子水平鉴定指采用通用引物对真菌基因组DNA特定基因序列进行扩增。目前西红花分子鉴定的引物主要包括:内部转录间隔区引物(ITS)、RNA聚合酶Ⅱ亚基引物(RPB2)和β-微管蛋白基因引物(β-tubulin)[46]

  • 内生真菌可从宿主中吸取营养供给自身生长所需,并产生代谢物刺激植物组织的生长与发育,提高宿主对生物或非生物胁迫的耐受性,调控宿主细胞次生代谢产物的生物合成,具有单独生产与宿主相同或相似活性物质的能力,是有益的微生物资源[35]。此外,内生真菌及其代谢产物还具有抑菌[47-49]、固氮[50]、提高植物抗性[50-51]、抗癌[48]等多种功能。可见内生真菌具有促进植物生长、提高抗性的作用。

    西红花主要活性成分(如西红花苷、西红花酸等)药用价值较高,但产量低、价格昂贵。因此,许多科研工作者将目光转向了西红花内生真菌的研究。WANI等[52]发现:西红花内生真菌被孢霉Mortierella alpina CS10E4在促进西红花生长、增加类胡萝卜素积累、提高植株抗性等方面具有显著效果;田间试验表明:经过内生处理的西红花植株,球茎总生物量、球茎大小、柱头生物量、顶端出芽芽数、不定根数等形态和生理性状均有显著改善。分子机制可能是该菌通过调控关键代谢途径基因的表达,将代谢流引向促进类胡萝卜素合成的路径,从而显著提高寄主类胡萝卜素的含量。ZHENG等[53]从西红花内生真菌酒色青霉P. vinaceum培养物的活性成分中分离到了喹唑啉生物碱化合物,认为其具有潜在的细胞毒性和抗真菌活性。WANI等[54]研究发现:西红花内生真菌甘瓶霉Phialophora mustea可提高寄主植物对多种环境胁迫因子的耐受性,代谢产物具有潜在的抗菌和抗癌活性。多数内生真菌还会产生大量吲哚乙酸(IAA)以促进宿主植物的生长[42, 54]。此外,WEN等[55]对内生真菌胞外多糖(EPS)的研究发现:EPS能有效清除超氧化物阴离子自由基,是一种潜在的生物活性来源,适用于制药和食品工业。

    由此可见,内生菌是重要的生物资源。研究植物内生菌,了解植物与微生物之间的关系,有助于促进西红花的可持续栽培,提高产量。

  • 生物防治菌是存在于种植土壤或植物根系表面的微生物,可通过多种机制抑制病原菌,如拮抗作用[56]、溶菌作用、营养和空间竞争[57]、提高植物抗性[58]、促进植物生长[59]、产生抗生素或刺激植物防御反应等。因此,生防菌可作为化学药剂的环保替代品,在降低西红花发病率的同时,对环境和寄主无任何损伤[31]。目前西红花栽培方面研究较为成熟的生防菌有假单胞菌Pseudomonas[60]、木霉菌Trichoderma[61]和芽孢杆菌Bacillus[62]等。

  • 芽孢杆菌是一种能够有效防治西红花真菌病害的生防细菌。陶中云等[63]从西红花土壤中分离并鉴定了1株蜂房类芽孢杆菌Paenibacillus alvei ZJUB2011-1菌株,该菌株对西红花球茎腐烂病的防治效率高达57.14%,与多菌灵防治效率相当[64]。吴李芳[15]从西红花根际土壤中分离到1株对西红花球茎腐烂病具有较好防治效果的解淀粉芽孢杆菌Bacillus amyloliquefaciens C612菌株,发现C612菌株通过产生脂肽类抗生素抑制病原菌的生长,并且对西红花有较好的促生长作用。KOUR等[65]从西红花根际土壤中分离了3种芽孢杆菌,分别为苏云金芽孢杆菌B. thuringiensis DC1菌株、巨大芽孢杆菌B. megaterium VC3菌株和解淀粉芽孢杆菌B. amyloliquefaciens DC8菌株;田间试验发现这3株芽孢杆菌都能明显促进西红花植株生长,降低球茎发病率。此外,GUPTA等[66]发现枯草芽孢杆菌B. subtilis、荧光假单胞菌P. fluorescens和棘孢木霉菌T. asperellum不仅降低了西红花病原菌数量和病害发生率,有效防治西红花球茎腐烂病,还有利于延长西红花的花期(表2)。目前,针对芽孢杆菌生物防治和促进植物生长方面已开展了系统的研究,部分菌株已实现商品化,产生了较大的经济效益[67]

    菌株名称菌株类型来源作 用参考文献
    蜂房类芽孢杆菌 Paenibacillus alvei ZJUB2011-1细菌根际土壤防治球茎腐烂病     [63]
    解淀粉芽孢杆菌 Bacillus amyloliquefaciens C612细菌根际土壤抑制病原菌生长     [15]
    苏云金芽孢杆菌 B. thuringiensis DC1细菌根际土壤抑制病原菌,促进植株生长[65]
    巨大芽孢杆菌 B. megaterium VC3细菌根际土壤抑制病原菌,促进植株生长[65]
    解淀粉芽孢杆菌 B. amyloliquefaciens DC8细菌根际土壤抑制病原菌,促进植株生长[65]
    枯草芽孢杆菌 B. subtilis细菌生防药剂防治球茎腐烂病     [66]
    荧光假单胞菌 Pseudomonas fluorescens细菌生防药剂防治球茎腐烂病     [66]
    棘孢木霉菌 Trichoderma asperellum真菌生防药剂防治球茎腐烂病     [66]
    解淀粉芽孢杆菌 B. amyloliquefaciens W2细菌根际土壤防治球茎腐烂病     [67]

    Table 2.  Biocontrol bacterium of C. sativus had been reported

  • 生防菌作为化学农药的良好替代品,可改善环境污染、降低农药残留,药用植物生防菌的挖掘与验证也是科学研究的热点。ANISHA等[68]从生姜Zingiber officinale中分离到1株顶孢属真菌Acremonium sp.,具有良好的抑菌活性;进一步研究发现:该菌可产生胶霉毒素(gliotoxin),对病原菌具有较强的拮抗作用,表明该菌具有生物防治潜力。HAN等[69]从人参根际土壤中分离到1株具有较高抗菌活性的紫色色杆菌Chromobacterium sp. JH7菌株,该菌能产生几丁质酶、蛋白酶等抗菌分子,为开发人参生物防治剂提供了理论依据。姜云等[70]研究发现:施用生防菌株FG14可湿性粉剂能有效防治人参锈腐病,效率高达68.69%。将三菌合剂“宁盾”施用于浙贝母Fritillaria thunbergii根腐病地块,发现其对植株有显著促生长、防病作用[71](表3)。综上所述,生防菌对药用植物的绿色高效种植、提升品质具有重要作用和广阔的应用前景。

    菌株名称菌株类型来源功能参考文献
    顶孢属真菌 Acremonium sp.真菌 健康生姜  产生胶霉毒素抑制病原菌[68]
    紫色色杆菌 Chromobacterium sp. JH7细菌 人参根际土壤产生几丁质酶、蛋白酶抑制病原菌[69]
    深海链霉菌 Streptomyces scopuliridis细菌 人参根际土壤产生几丁质酶、蛋白酶抑制病原菌[69]
    灰锈赤链霉菌 S. griseorubiginosus放线菌川芎根茎  抑制4种川芎根腐病原菌[72]
    团孢链霉菌 S. agglomeratus放线菌川芎根茎  抑制4种川芎根腐病原菌[72]
    解淀粉芽孢杆菌 B. amyloliquefaciens C10细菌 人参根际土壤改变真菌群落结构[73]
    萎缩芽孢杆菌 B. atrophaeus SXKF16-1细菌 黄芪根际土壤定植于根际土壤,改善土壤微生态环境[74]
    哈茨根霉 Trichoderma harzianum TharDOB-31真菌 健康姜黄根茎定植于根茎,产生抗真菌化合物[75]

    Table 3.  The excavation and verification of biocontrol bacteria in other traditional Chinese medicine plants

  • 西红花优质种质资源匮乏,土地连作障碍,有效的杀菌剂或生物农药匮乏,众多不利因素导致球茎腐烂病日益严重,品质和产量难以保障[15]。要解决这些困扰产业发展的核心问题,可从以下方面集中科研攻关。一是基于现代宏基因组测序技术挖掘西红花球茎腐烂致病菌、生防菌。获得不同菌株并进行功能验证,分析西红花球茎腐烂病与根际土壤微生物群落的关系,为杀菌剂或生物农药的开发提供理论依据[76-77]。如已有研究[76]通过对人参锈腐病的根际土壤、感病人参根部分别进行宏基因组测序,比较土壤微生物群落和感病人参根部微生物群落差异,分析土壤中金属元素等与锈腐病发生的相关性,系统挖掘人参锈腐病的潜在致病菌,探明了连作土壤中金属离子失衡是人参锈腐病的潜在连作障碍诱因。二是基于合成生物学和发酵工程原理,将中药活性物质代谢合成的催化酶基因在大肠埃希菌Escherichia coli、酵母、烟草Nicotiana tabacum等模式原核和真核物种中进行基因表达重构,以实现药效物质的异源高效生物合成,从而解决目前优质中药药源紧缺、药效物质不稳定等问题。目前托品烷生物碱-莨菪碱(hyoscyamine)、青蒿素(artemisinin)等药用活性物质已实现基于合成生物学技术方法的异源生物全合成[78-80]。因此,从分子水平解析西红花苷、西红花酸等主要活性成分代谢合成的催化酶基因或调控基因,能为优质西红花转基因新品种的培育以及基于合成生物学技术手段的西红花主要活性成分的异源生物合成提供理论和应用依据[81-82]。三是脱毒中药种苗的规模化应用可有效缓解中药植物连作引起的病虫害频发的生产问题。目前,滁菊Chrysanthemum morifolium [83]、半夏Pinellia ternata[84]、怀地黄Rehmannia glutinosa [85]等中药材脱毒种苗在生产上的规模化应用有效扭转了土地连作引起的病虫害频发、严重影响生产效能的不利局面。西红花植株病害严重,创制西红花脱毒新种质,能为生产上提供可靠的优质西红花种源,提高生产效益[86-89]

Reference (89)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return